

Putting QA back in MRQA

Antoine Bordes with <u>Angela Fan</u>, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, Michael Auli, Chloe Braud, Claire Gardent, Emily Dinan, Stephen Roller, Kurt Schuster

MRQA Workshop -- 11/4/19 -- Hong Kong

Friday June 17, 2016

AKBC 2016

5th Workshop on Automated Knowledge Base Construction (AKBC) 2016

at NAACL 2016 in San Diego, California, June 17, 2016.

Friday, June 17th, 2016

Start	End	Speaker	Title
9:00	9:10	AKBC Organizers	Opening Remarks
9:10	9:40	Kristina Toutanova	Joint Compositional Learning from Text and Knowledge Bases (slides)
9:40	10:10	Oren Etzioni	The Atlen Al Science Challenge: Results, Lessons, and Open Questions (slides)
10:10	11:00		Morning Poster Session and Coffee Break
11:00	11:30	Andrew McCallum	Universal Schema for Representation and Reasoning from Natural Language
11:30	12:00	William Cohen	Look Ma, No Neurons: Using Explicit Inference Rules to Complete a KB (slides)
12:00	1:20		Lunch Break and Morning Posters
1:20	1:35	Stuart Russell, Ole Torp Lassen, Justin Uang, Wei Wang	Contributed Talk: The Physics of Text: Ontological Realism in Information Extraction (slides)
1:35	1:50	Sreyasi Nag Chowdhury, Niket Tandon, Gerhard Weikum	Contributed Talk: Know2Look: Commonsense Knowledge for Visual Search (slides)
1:50	2:15	Christopher Manning	Texts as Knowledge Bases (slides)
2:15	2:40	Benjamin Van Durme	Common Sense and Language
2:40	2:55	Patrick Verga, Andrew McCallum	Contributed Talk: Row-less Universal Schema (slides)
2:40	2:55 3:10	Patrick Verga, Andrew McCallum Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, Sebastian Riedel	Contributed Talk: Row-less Universal Schema (slides) Contributed Talk: An Attentive Neural Architecture for Fine-grained Entity Type Classification (slides)
		Sonse Shimaoka, Pontus Stenetorp,	Contributed Talk: An Attentive Neural Architecture for Fine-grained Entity
2:55	3:10	Sonse Shimaoka, Pontus Stenetorp,	Contributed Talk: An Attentive Neural Architecture for Fine-grained Entity Type Classification (slides)
2:55	3:10 4:00	Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, Sebastian Riedel	Contributed Talk: An Attentive Neural Architecture for Fine-grained Entity Type Classification (slides) Thernoon Poster Session and Coffee Break
2:55 3:10 4:00	3:10 4:00 4:25	Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, Sebastian Riedel Percy Liang	Contributed Talk: An Attentive Neural Architecture for Fine-grained Entity Type Classification (slides): Chernoon Poster Session and Coffee Break Querying Unnormalized and Incomplete Knowledge Bases (slides) Memory Networks for Language Understanding: Successes and

No PyTorch

No BERT!
No Transformers even!

No SQuAD!!!

SQuAD: 100,000+ Questions for Machine Comprehension of Text

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, Percy Liang

(Submitted on 16 Jun 2016 (v1), last revised 11 Oct 2016 (this version, v3))

We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research.

The dataset is freely available at this https URL

Comments: To appear in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Subjects: Computation and Language (cs.CL)

Cite as: arXiv:1606.05250 [cs.CL]

(or arXiv:1606.05250v3 [cs.CL] for this version)

Bibliographic data

[Enable Bibex(What is Bibex?)]

Submission history

From: Pranav Rajpurkar [view email]
[v1] Thu, 16 Jun 2016 16:36:00 UTC (307 KB)

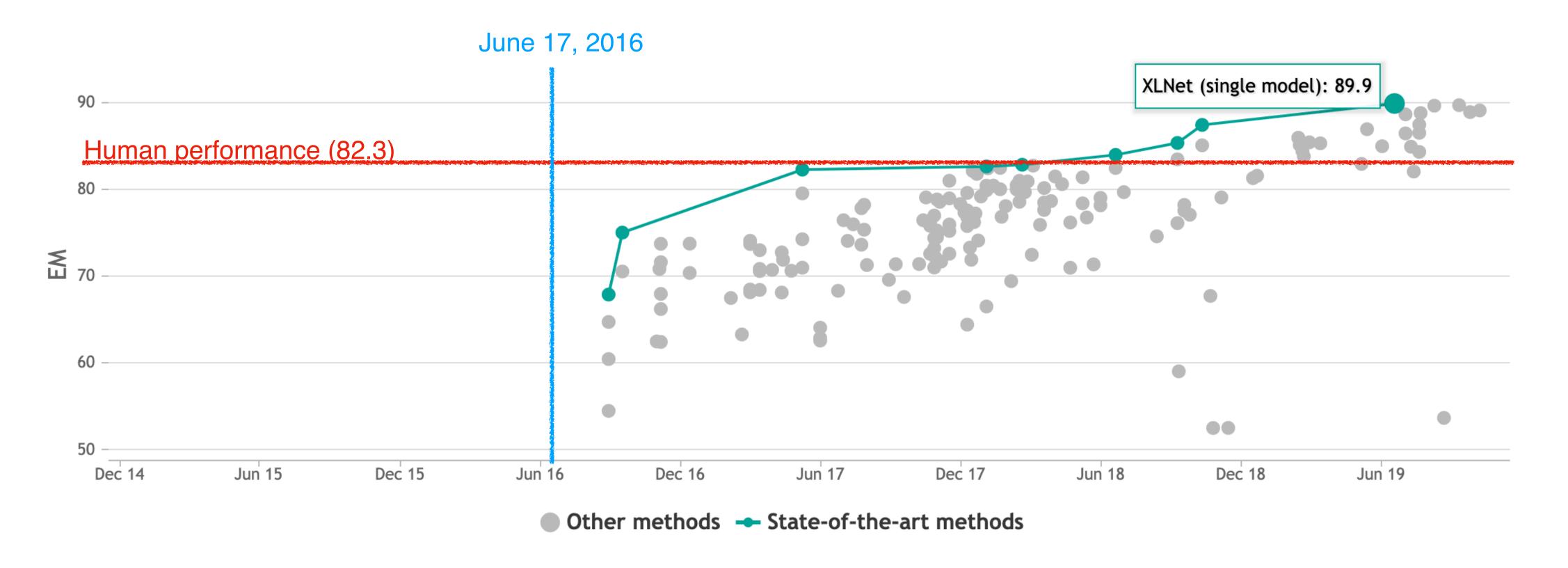
[v2] Fri, 7 Oct 2016 03:48:29 UTC (307 KB)

[v3] Tue, 11 Oct 2016 02:42:36 UTC (307 KB)

SQuAD had appeared on Arxiv the day before the workshop!

Since then?

Question Answering on SQuAD1.1



https://paperswithcode.com/sota/question-answering-on-squad11

	GLUE	CoLA	SST-2	MRPC	MRPC	STS-B	STS-B
Model	Average	Matthew's	Accurac	y F1	Accuracy	Pearson	Spearman
Previous best	89.4^{a}	69.2^{b}	97.1 ^a	93.6 ^b	91.5^{b}	92.7^{b}	92.3^{b}
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	89.7	70.8	97.1	91.9	89.2	92.5	92.1
	QQP	. • •	MNLI-m	MNLI-mm	QNLI	RTE	WNLI
Model	F1 A	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	74.8^{c}	90.7^{b}	91.3^{a}	91.0^{a}	99.2^a	89.2^{a}	91.8^{a}
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89,6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	C	96.3	91.1	89.7
T5-11B	74.6	90.4	92.0		96.7	92.5	93.2
	SO: AD	SO. AD	Cupan		CB	CB	COPA
Model	$\begin{array}{c} \mathrm{SQuAD} \\ \mathrm{EM} \end{array}$	$\begin{array}{c} \mathrm{SQuAD} \\ \mathrm{F1} \end{array}$	Super				
Model	EWI	F1					
Previous best	88.95^{d}	94.52^{d}					
T5-Small	79.10	87.24					
T5-Base	85.44	92.08					
T5-Large	86.66	93.79	82.		91.6	94.8	83.4
T5-3B	88.53	94.95	86.4		90.3	94.4	92.0
T5-11B	90.06	95.64	88.9		93.0	96.4	94.8
	MultiRC	MultiRC	ReCoRD	ReCor	RTE	WiC	WSC
Model	F1a	EM	F1	Accuracy		Accuracy	Accuracy
Previous best	84.4^{e}	52.5^{e}	90.6^{e}	90.0^{e}	88.2^{e}	69.9^{e}	89.0 ^e
T5-Small	69.3	26.3	56.3	55.4	73.3	66.9	70.5
T5-Base	79.7	43.1	75.0	74.2	81.5	68.3	80.8
T5-Large T5-3B	83.3 86.8	50.7	86.8	85.9	87.8	69.3	86.3
		58.3	91.2	90.4	90.7	72.1	90.4
T5-11B	88.2	62.3	93.3	92.5	92.5	76.1	93.8
	WMT End	De WMT l	EnFr WN	IT EnRo	CNN/DM	CNN/DM	CNN/DM
Model	$_{ m BLEU}$	$_{ m BLE}$	\mathbf{U} 1	$_{ m BLEU}$	ROUGE-1	ROUGE-2	ROUGE-L
Previous best	${\bf 33.8}^{f}$	43.8	g f	38.5^{g}	43.47^{h}	20.30^{h}	40.63^{h}
T5-Small	26.7	36.0		26.8	41.12	19.56	38.35
T5-Base	30.9	41.5		28.0	42.05	20.34	39.40
T5-Large	32.0	41.5		28.1	42.50	20.68	39.75
T5-3B	31.8	42.6		28.2	42.72	21.02	39.94
T5-11B	32.1	43.4		28.1	43.52	21.55	40.69
10-1110	02.1	40.	•	20.1	10.02	21.00	40.00

Table 14: Performance of our T5 variants on every task we study. Small, Base, Large, 3B, and 11B refer to model configurations with 60 million, 220 million, 770 million, 3 billion, and 11 billion parameters, respectively. In the first row of each table, we report the state-of-the-art for the task, with the superscript denoting its source with references listed at the end of this caption. All results are reported on the test set except for SQuAD where we use the validation set. ^a[Lan et al., 2019] ^b[Wang et al., 2019c] ^c[Zhu et al., 2019] ^d[Yang et al., 2019] ^e[Liu et al., 2019c] ^f[Edunov et al., 2018] ^g[Lample and Conneau, 2019] ^h[Dong et al., 2019]

October 24, 2019

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Colin Raffel* Sharan Narang Noam Shazeer* Michael Matena Adam Roberts^{*} Yanqi Zhou

Katherine Lee*
ei Li Peter J. Liu

Google

QA is now only a sub-benchmark?

At least, SQuAD & Machine Reading are

Standard post-SQuaD Datasets

QUESTION

What temperature is a fever?

Although a fever (pyrexia) could be considered any body temperature above the normal temperature of 98.6 degrees Fahrenheit (98.6 F or 37 C), medically, a person is not considered to have a significant fever until the temperature is above 100.4 F (38.0 C).

Standard post-SQuaD Datasets

QUESTION

What temperature is a fever?

Although a fever (pyrexia) could be considered any body temperature above the normal temperature of 98.6 degrees Fahrenheit (98.6 F or 37 C), medically, a person is not considered to have a significant fever until the temperature is above 100.4 F (38.0 C).

How about answering --

What causes a fever?

Why are fevers dangerous?

Why do you need to bring your temperature down?

It's time to get to the core of what QA is!

Open domain

Developed and argumentative

Machine Reading is one of the keys

Long-form QA

Long Form (open-domain) Question Answering

QUESTION

Why do you need to bring your temperature down?

Up to a point, having a fever is a good thing when you're fighting an infection as in the case of sepsis (infection in the blood). Many pathogens don't fare well in even a degree or two of average raised temperature, while your body is much more resilient. It's still a pretty serious condition on its own, and sepsis is frequently fatal regardless of the not only the body's attempts to fight it, but with medical intervention.

The problems in general however, start when the fever is too high, or just high for too long. Your body will release something called chaperone molecules that help your proteins fold correctly, but there will still be errors and it's more energetically expensive. This chaperone molecules also have limits, and past a certain point your body fails on a number of levels.

For one, a lot of what your cells do is interact with, transport, [....]

Why is moving to long-form QA difficult?

- Generation of fluent outputs + Their Evaluation
- Retrieval of relevant sources
- Information synthesis
- Lack of Data!

Dataset and Pretrained

Mttp://www.github.com/facebookresearch/ELI5

https://facebookresearch.github.io/ELI5/

Explain Like I'm Five Dataset (Fan et al. ACL'19)

ELI5: why do you need to bring your temperature down?

I read somewhere that the reason our temp rises when we are sick is to help out immune system. if so, why try to lower it

28 Comments

SORT BY BEST -

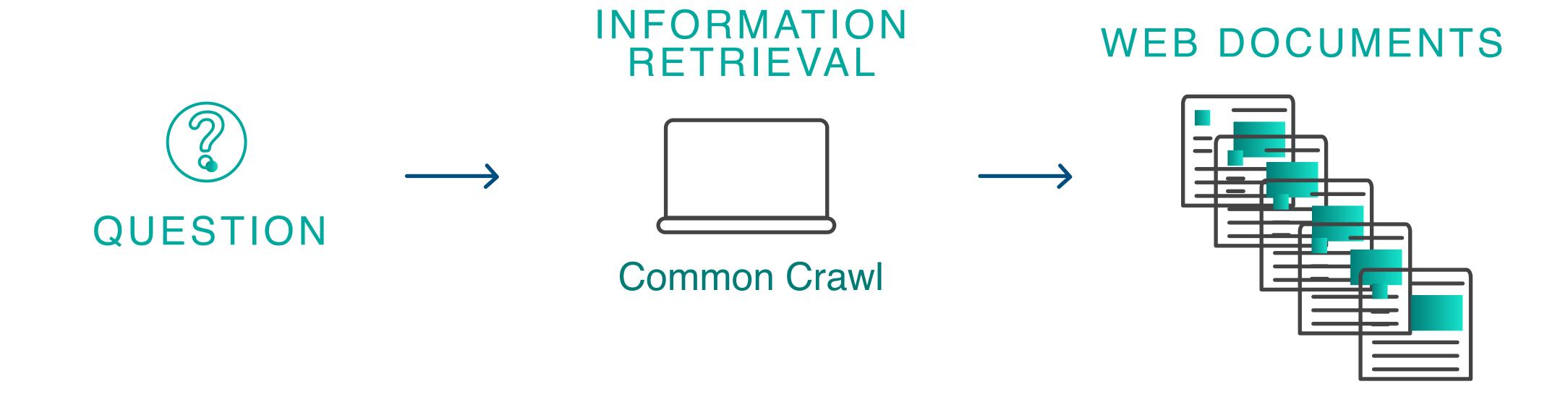
 \blacksquare

Up to a point, having a fever is a good thing when you're fighting an infection as in the case of sepsis (infection in the blood). Many pathogens don't fare well in even a degree or two of average raised temperature, while your body is much more resilient. It's still a pretty serious condition on its own, and sepsis is frequently fatal regardless of the not only the body's attempts to fight it, but with medical intervention.

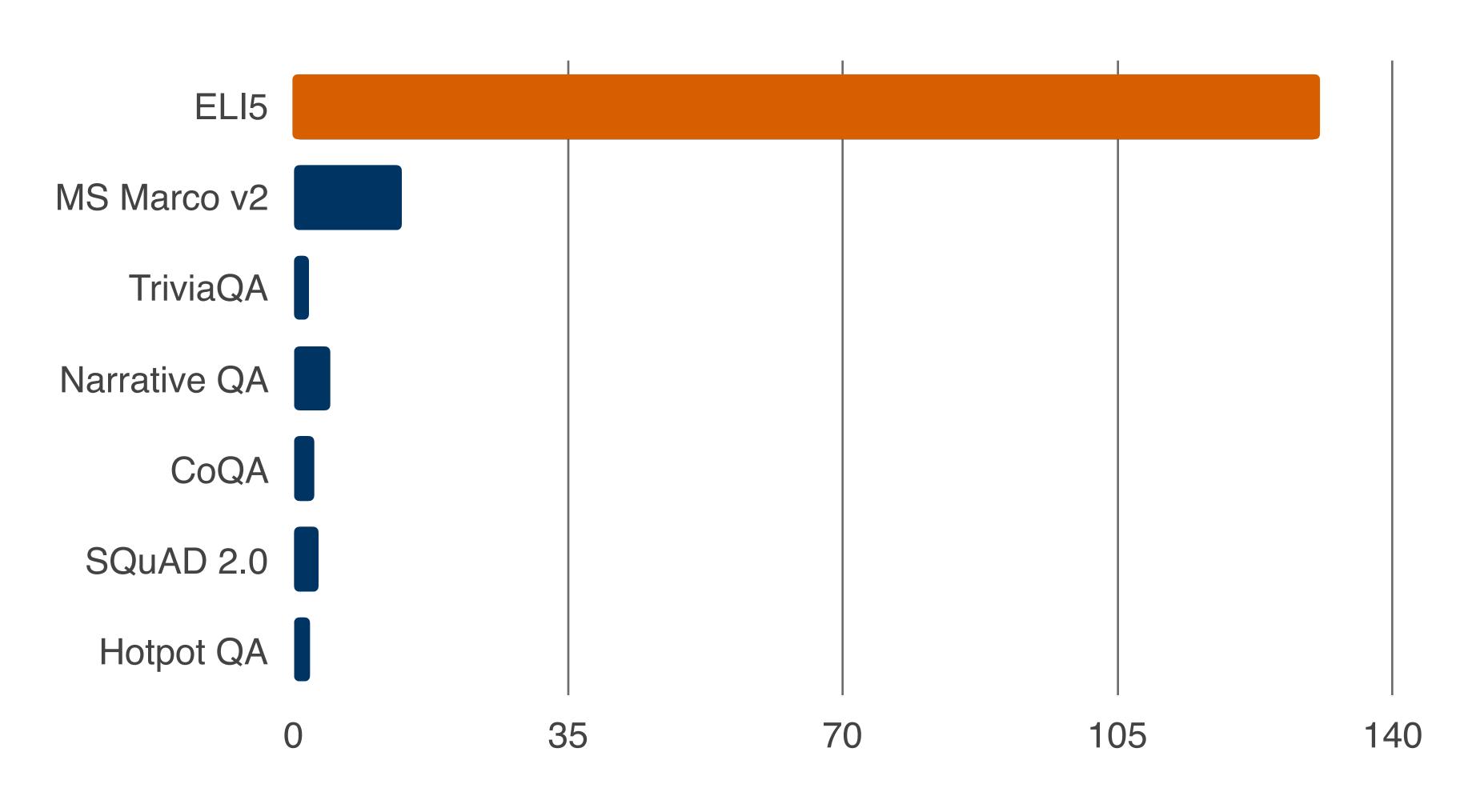
The problems in general however, start when the fever is too high, or just high for too long. Your body will release something called chaperone molecules that help your proteins fold correctly, but there will still be errors and it's more energetically expensive. This chaperone molecules also have limits, and past a certain point your body fails on a number of levels.

For one, a lot of what your cells do is interact with, transport, and produce proteins. The function of a protein is determined by its three dimensional structure, and it gets that through a process of folding. This is a process which can go wrong, and heat makes it far more likely to go wrong. Past a certain point critical proteins will start to unfold (denature) as in exposure to cooking methods. Needless to say, this does you no favors.

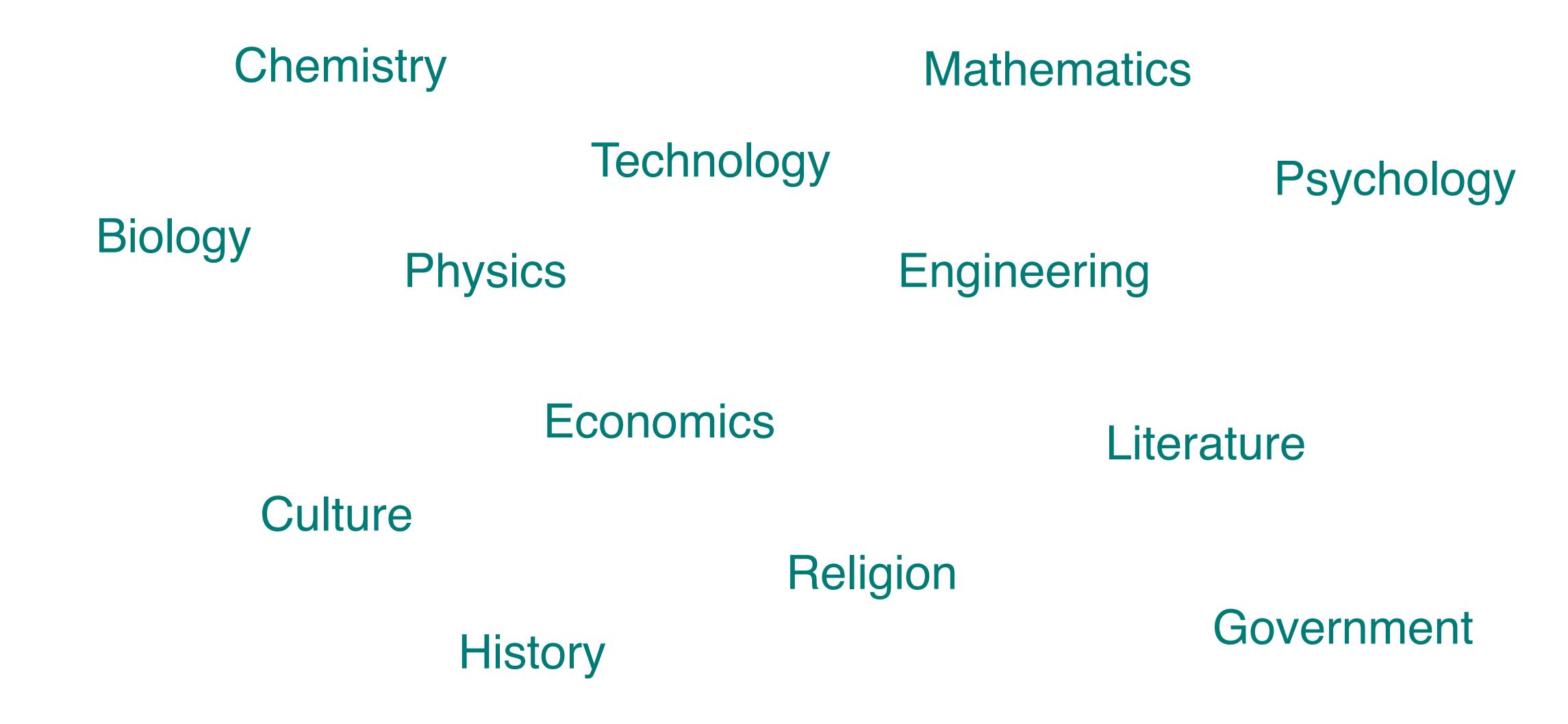
Open Domain



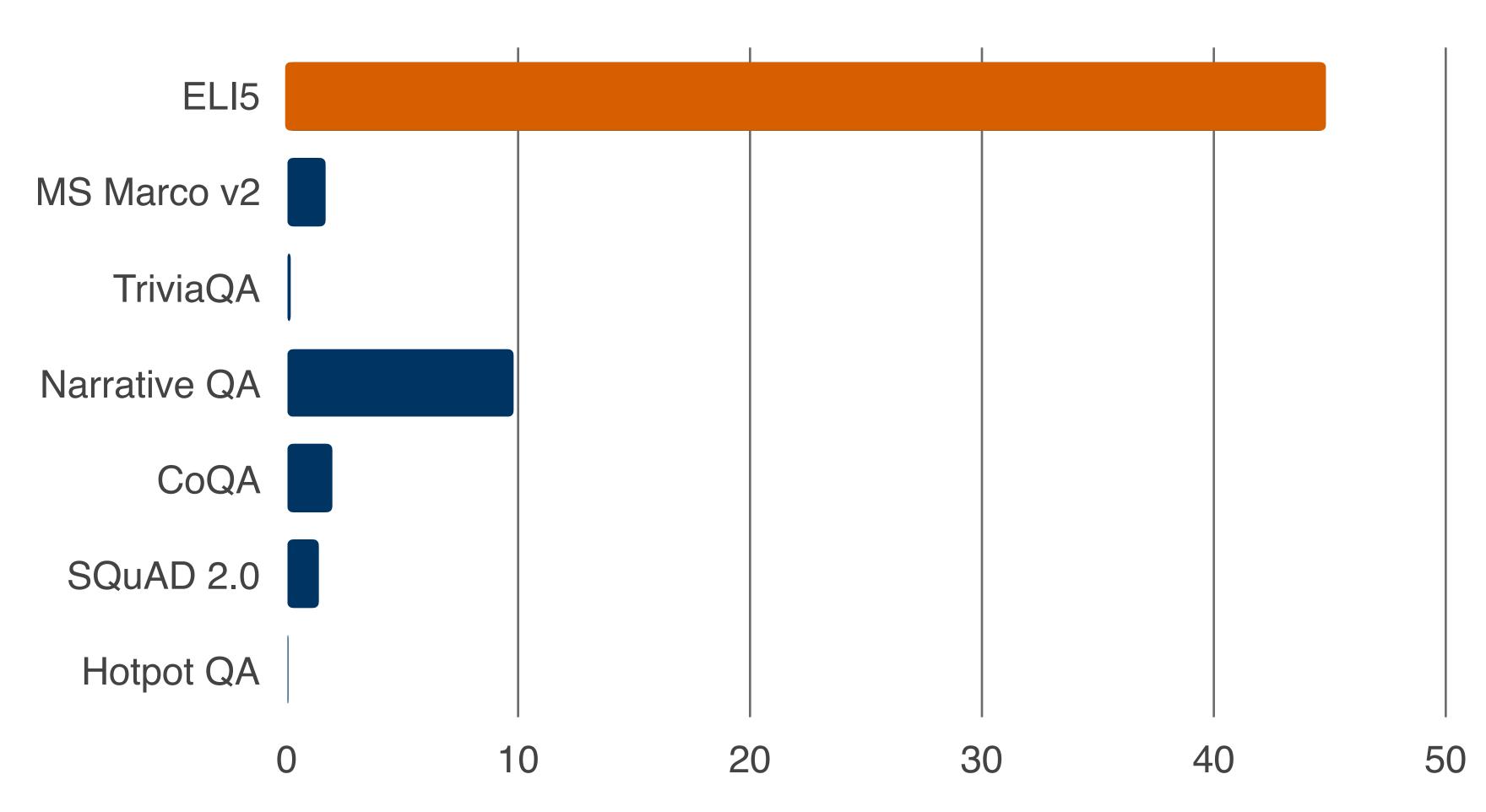
Longer Questions



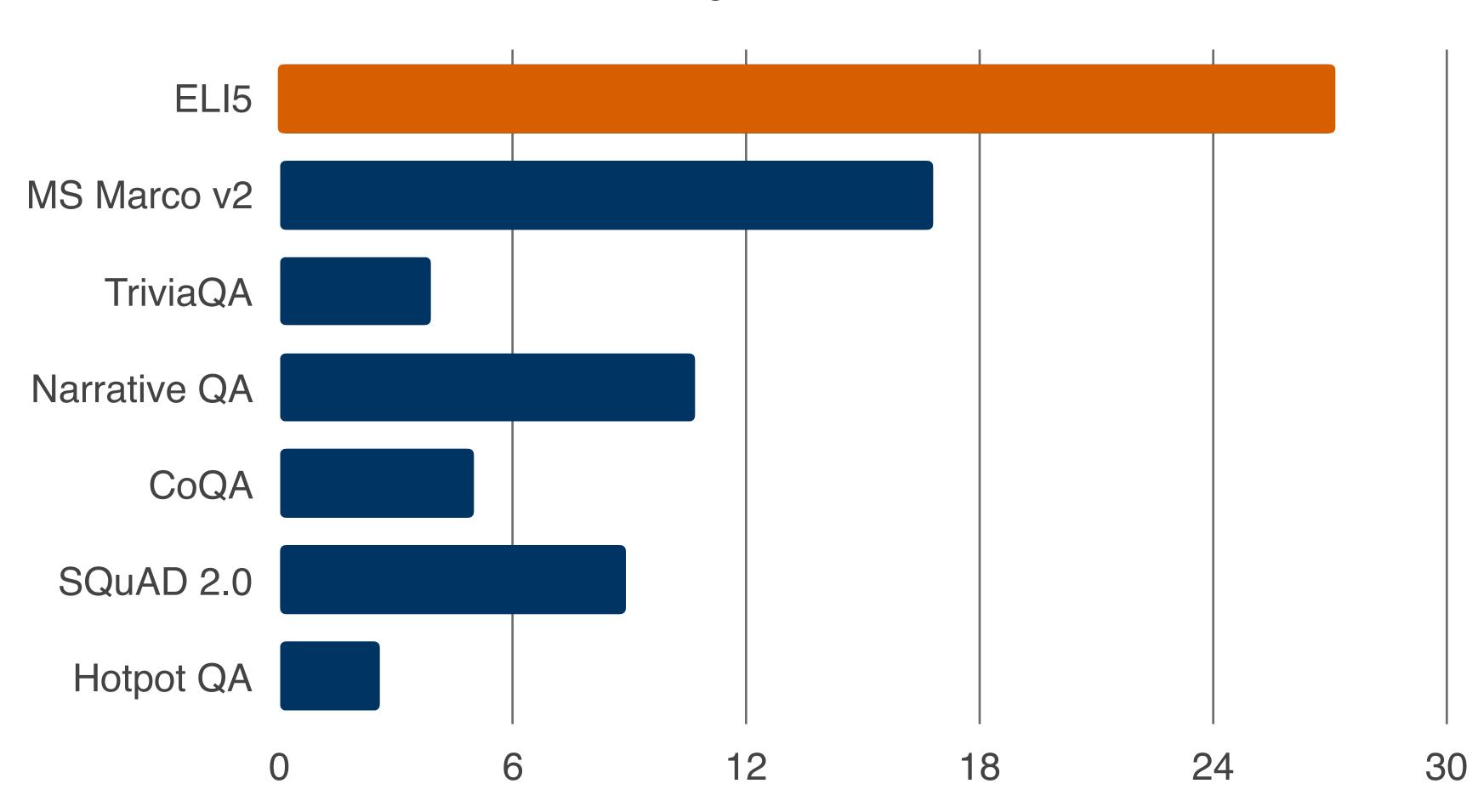
Questions about Diverse Topics



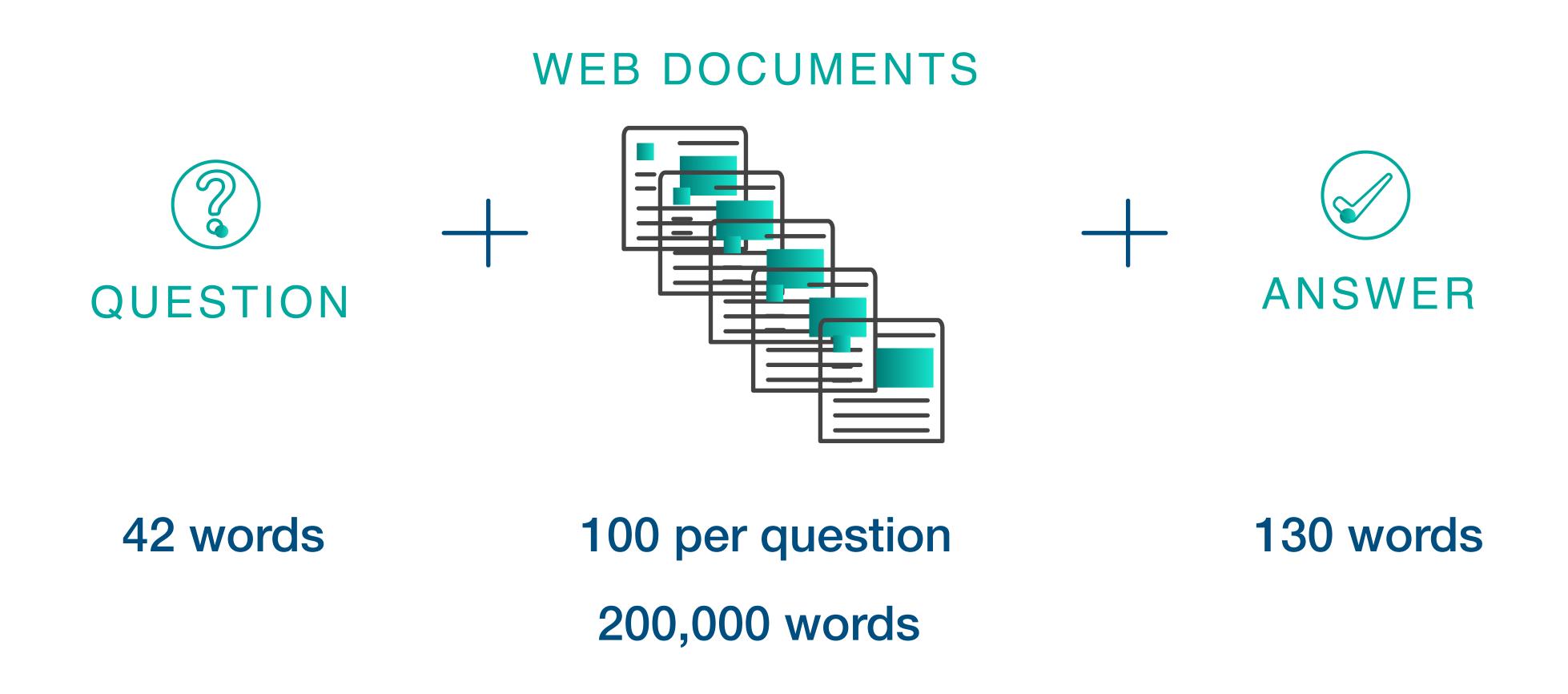
More Why? Questions



More How? Questions



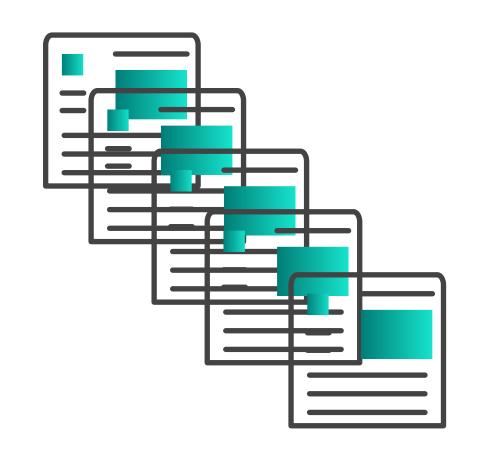
Explain Like I'm Five Dataset 270,000 EXAMPLES



Models

Modeling Challenges

WEB DOCUMENTS



Find Relevant Information in a Multi-Document Setting

Modeling Challenges

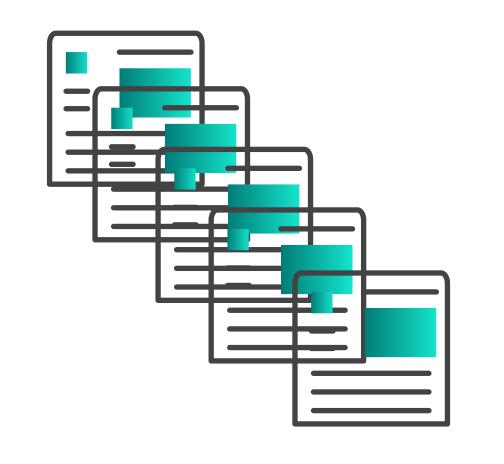
- Find Relevant Information in a Multi-Document Setting
- Query-driven Information Reasoning

Modeling Challenges

- Find Relevant Information in a Multi-Document Setting
- Query-driven Information Reasoning
- Writing a Long Text Answer

Dealing with Long Web Input

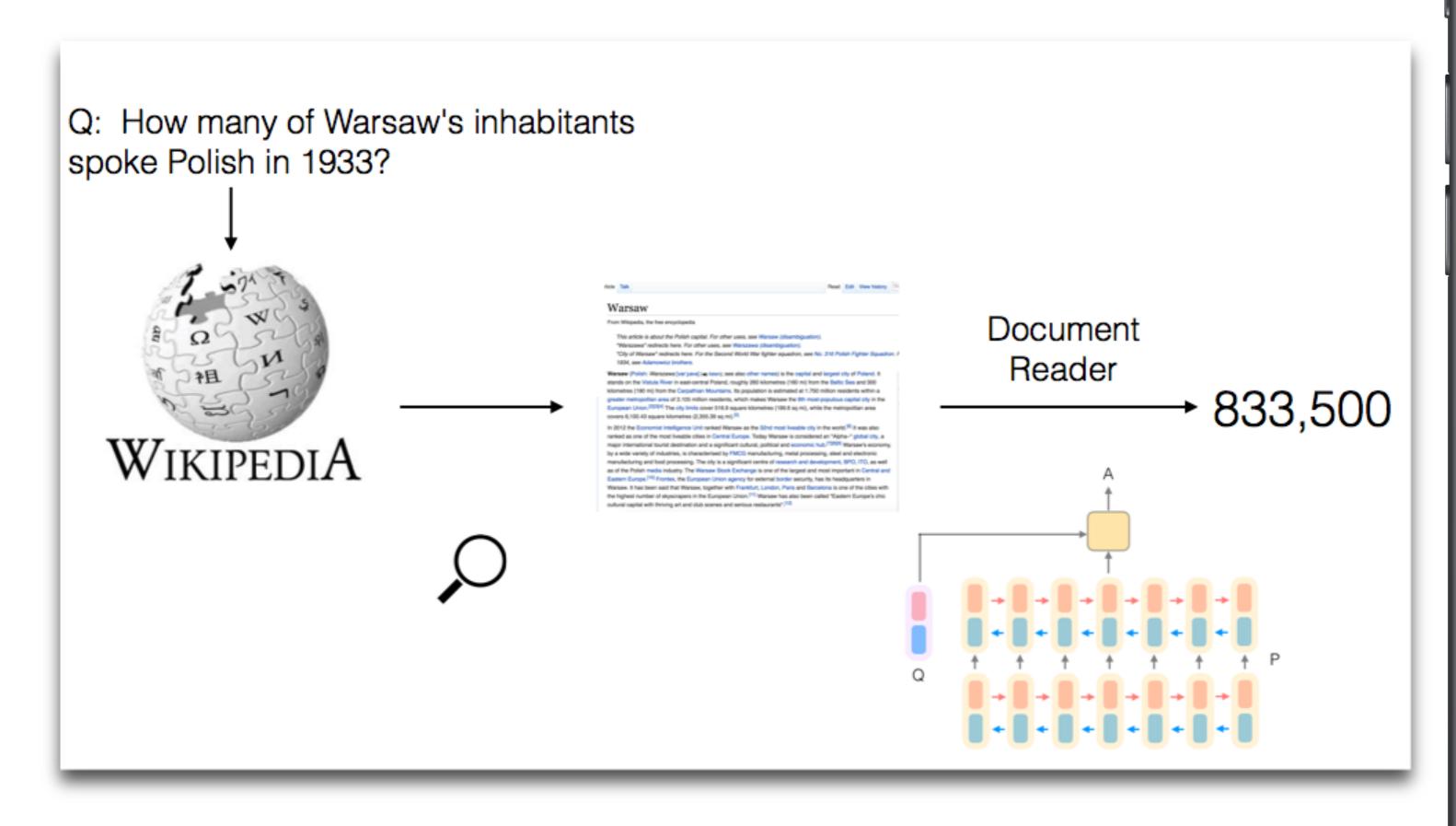
WEB DOCUMENTS



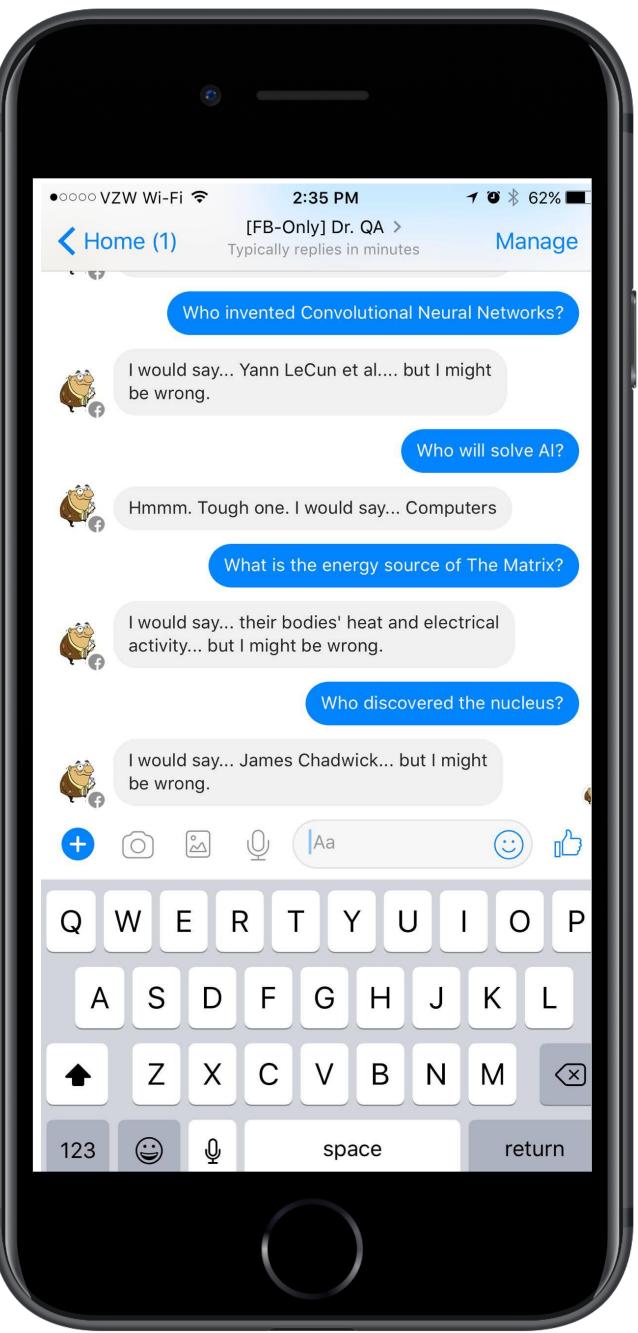
Over 200,000 words long

Around 1,000 words long

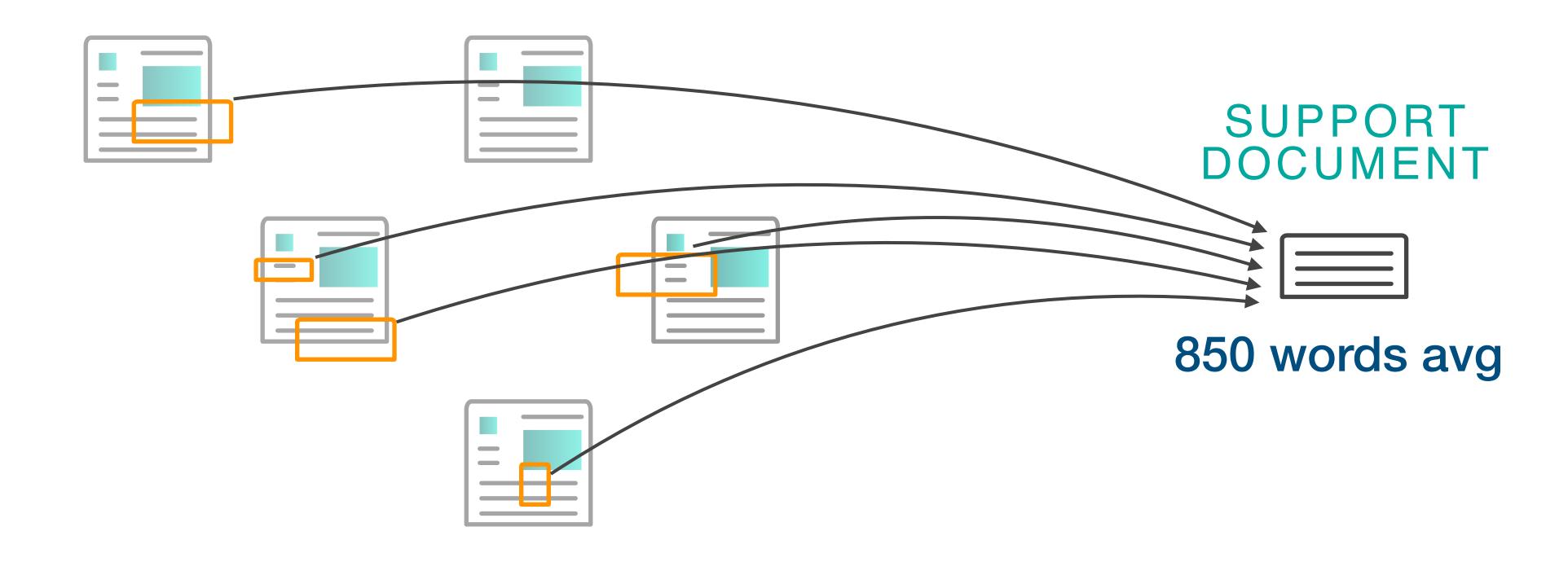
Using TF-IDF



DrQA (Chen et al., ACL'17)

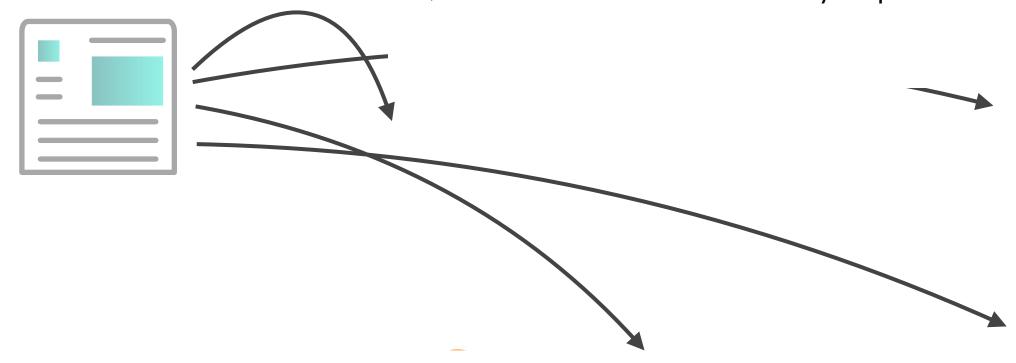


Creating a Shorter Support Document with TF-IDF

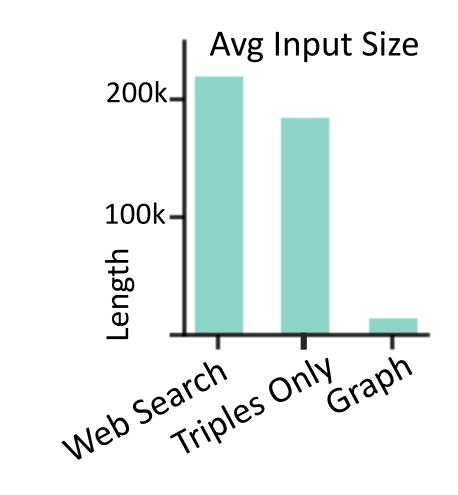


Creating a Shorter Support Document with Local KB (Fan et et al.

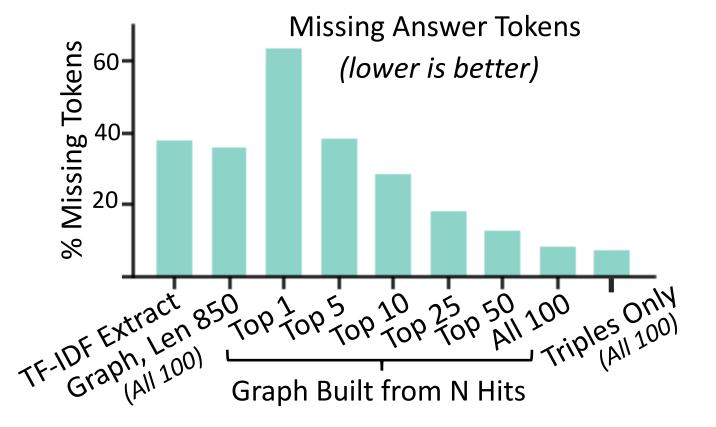
QUERY: Can someone finally explain the theory of general relativity?



Creating a Shorter Support Document with Local KB (Fan et et al.



- Large compression effect, reducing input size by an order of magnitude.
- Linearized output of the KB can be processed with (almost) standard Seq2Seq



- Despite compression, the graph contains most of the relevant tokens

Modeling Approaches

- Extractive
- Abstractive

Extractive Models

Find sentences of the support document to copy as the

Abstractive Models

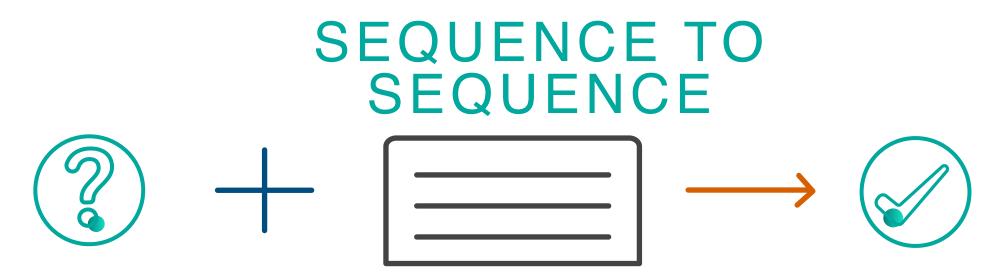
Generate each word of the

Abstractive Models

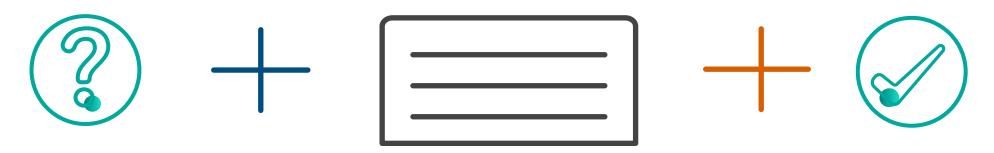
SEQUENCE TO SEQUENCE MULTITASK

training time: train on many tasks to add the benefit of language

training time: train on many tasks

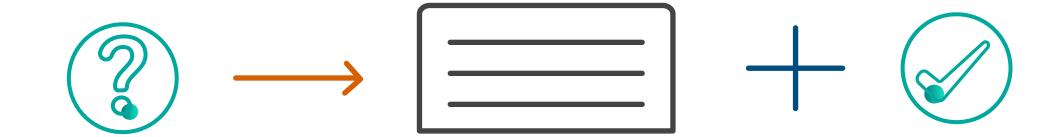


LANGUAGE MODELING



training time: train on many tasks

SEQUENCE TO SEQUENCE

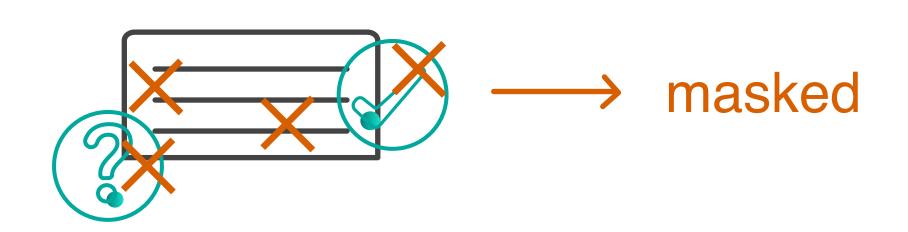


LANGUAGE MODELING

training time: train on many tasks

LANGUAGE MODELING

MASKED LANGUAGE MODELING



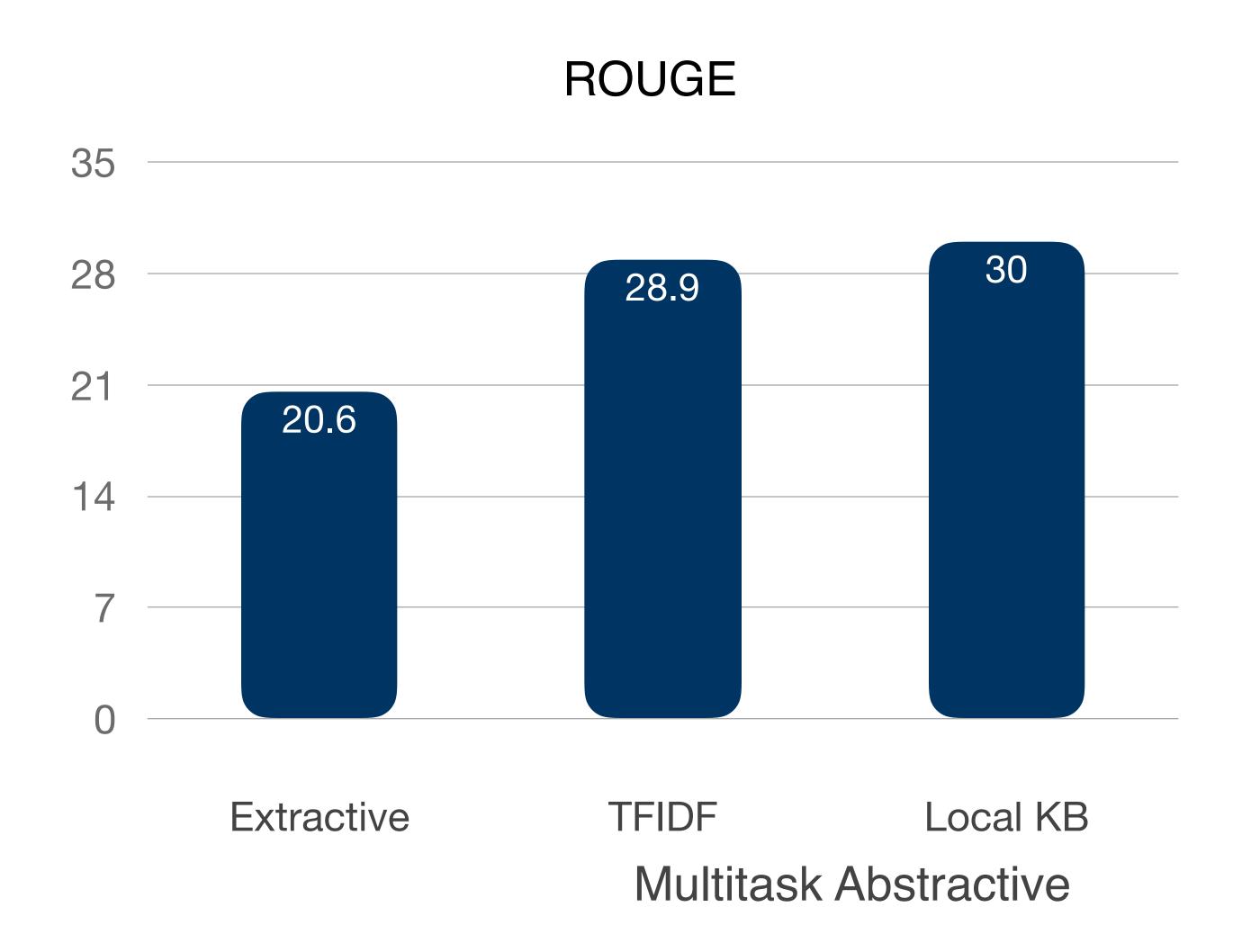
Abstractive Models

SEQUENCE TO SEQUENCE MULTITASK

inference time: standard question answering

Evaluatio n

Automatic Evaluation



Interpretation

Question: Can someone finally explain the theory of general relativity?

Human Evaluation

MODEL 1
ANSWER

MODEL 2
ANSWER

ANSWER

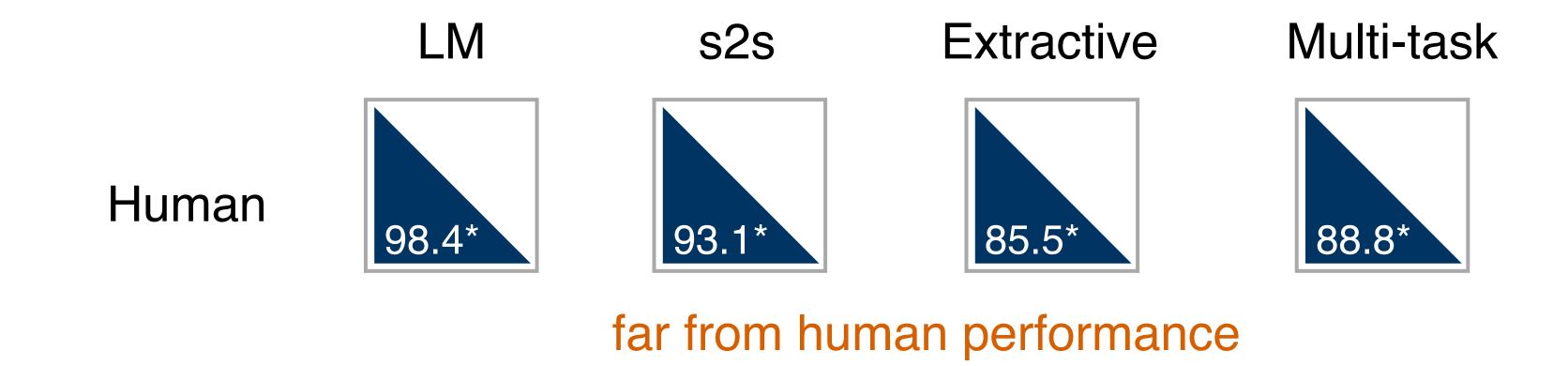
ANSWER

ANSWER

SAME
QUESTION

MEASURE
HUMAN
PREFERENCE

Human Evaluation



Still a long way to go but we are putting the pieces together!

Prediction: Long-form, open-domain and extractive QA will merge

Knowledge beyond QA

Wizard of Wikipedia (Dinan et al. ICLR'19)

1307 Diverse General Topics: crowd-sourced

Gouda cheese commuting music festivals podcasts bowling Arnold Schwarzenegger Alpine skiing Bodybuilding supplement Harley-Davidson Miley Cyrus Hamilton (musical) Ireland Cannabis (drug) Mount Kilimanjaro Eggplant Welding Aquarium Italian cuisine

Mercedes-Benz S-Class
Peanut
German language
Chicago-style pizza
Black hair
Toga party
100 metres
Tiger
Smoking
Winter
Acrophobia
List of art media
Pet adoption
Influencer marketing
Vitamin C
Human height

Steak

Kurt Cobain List of water sports Strawberry Online game Text messaging Baileys Irish Cream **Fiction** American football Online shopping Aldi Rock and roll Kendrick Lamar Medical billing Blue Ridge Parkway Clown Pasta Hiking

Each Linked to Wikipedia

Table 1: Dataset statistics of the Wizard of Wikipedia task.

Wizard of Wikipedia Task	Train	Valid	Test Seen	Test Unseen
Number of Utterances	166,787	17,715	8,715	8,782
Number of Dialogues	18,430	1,948	965	968
Number of Topics	1,247	599	533	58
Average Turns per Dialogue	9.0	9.1	9.0	9.1
Knowledge Database	5.4M articles		93M sentences	

]	Topic:	Ice cream	
	izard: ntice:	I just love ice cream. I love the types with fruits and flavours. Do you like ice cream? I love Ice cream as much as any one. I especially like Gelato, foreign ice cream!	
Knowledge		Ice cream is a sweetened frozen food typically eaten as a snack or dessert It is usually made from dairy products, such as milk and cream, and	
		Bacon ice cream (or bacon-and-egg ice cream) is an ice cream generally created by adding bacon to egg custard and freezing the mixture.	
W	izard:	ard: Me too. There are some strange combinations though, have you heard of bacon ice cream? where they add bacon and even egg custard to the freezing mixture!	
Appre	ntice:	Surprisingly bacon ice cream doesn't surprise me. That doesn't sound appealing to me, but perhaps it could be delicious	

Retrieval-based model (~extractive)

Model: Retrieval Transformer MemNet

Topic: E-book (*seen*)

Human: i do not know why, but I have never gotten into E-books

Model: Same here. I have a kindle, but I don't use it for books. It's nicer to hold a real book and turn pages.

Human: yes, i like the physical feel and smell of a real book

Model: I actually had a Nook e-book where you had to download the e-book after selecting it online. I grew

out of it, I prefer paper books also.

Human: i tried e-books but I do not like reading on a screen, its disorientated for me

Model: Yes, reading a book on a tablet just isn't the same!

Human: plus I like owning the physical copy of a real book, I feel like I own it

Model: I prefer print and newsreels.

model. I prefer print and newsreers.

Topic: Toga party (seen)

Model: I love toga parties! I usually make my toga out of a bed sheet and wear my sandals.

Human: Me too!!! I usually use some flip flops and my blanket!

Model: Toga parties typically have games involving kegs and excessive drinking!

Human: Yeah! And getting to wear funny outfits and a crown of leaves!

Model: I love me some Toga Parties!

Human: I love me some too!

Model: Toga parties are so much fun with the Roman or Greek theme.

Human: Yeah! I especially like Greek themes

Generative model

Model: Two-Stage Generative Transformer MemNet

Topic: Circus (seen)

Model: have you ever been to a circus? it is a company of performers who put on diverse entertainment shows.

Human: I went to the circus once when I was a child actually.

Model: that's great! entertainment is a form of activity that holds the attention and interest of an audience.

Human: That's true. Have you ever been to a circus?

Model: I have not, but I know they were built with various types of seating ring, and sometimes a stage.

Human: I went to one held in a stadium, so we had box seats.

Model: that's awesome! i'm sure you'll have to go to the circus, with appropriate music.

Human: Yes, circuses usually have their own kind of music.

Model: circuses can be done by circuses.

Model: Two-Stage Generative Transformer MemNet

Topic: Shower (*unseen*)

Human: So I've been looking for a better showerhead with more water pressure for my shower.

Model: I love pressure-versed water at nearly constant temperature to a shower

Human: That sounds pretty great! Love those rainshower showers!

Model: the ancient greeks were the first people to have showers.

Human: Well I knew they were good for something.

Model: the original showers were neither indoor structures nor man made but were common.

Human: Ah that sounds intimidating!

Model: it is required manual transport of both fresh and waste water.

