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Abstract

In this paper, we study the possibility of unsu-
pervised Multiple Choices Question Answer-
ing (MCQA). From very basic knowledge,
the MCQA model knows that some choices
have higher probabilities of being correct than
others. The information, though very noisy,
guides the training of an MCQA model. The
proposed method is shown to outperform the
baseline approaches on RACE and is even
comparable with some supervised learning ap-
proaches on MC500.

1 Introduction

Question Answering (QA) has been widely used
for testing Reading Comprehension. Recently,
numerous question answering datasets (Weston
et al., 2015; Rajpurkar et al., 2016, 2018; Yang
et al., 2018; Trischler et al., 2017; Choi et al.,
2018; Joshi et al., 2017; Kwiatkowski et al., 2019;
Reddy et al., 2019; Richardson, 2013; Lai et al.,
2017a; Khashabi et al., 2018) have been proposed.
These datasets can be divided into two major cate-
gories: Extractive Question Answering (EQA) and
Multiple Choices Question Answering (MCQA).
In EQA, the answer has to be a span of the
given reading passage, such as SQuAD (Rajpurkar
et al., 2016) and NewsQA (Trischler et al., 2017);
while in MCQA, the answer is one of the given
choices, such as MCTest (Richardson, 2013) and
RACE (Lai et al., 2017a).

Recently, large pretrained language models such
as BERT (Devlin et al., 2019) have exceeded hu-
man performance in some EQA benchmark cor-
pora, for example, SQuAD (Rajpurkar et al., 2016).
Compared to EQA, MCQA does not restrict the an-
swer to be spans in context. This allowed MCQA
can have more challenging questions than EQA, in-
cluding but not limited to logical reasoning or sum-
marization. The performance gap between BERT
and human performance is still significant. In this
paper, we focus on MCQA.

Figure 1: Overall training process.

A person who can read can deal with the MCQA
task without further training, but this is not the case
for a machine. The BERT-based models cannot be
directly applied to solve the MCQA task without
seeing any MCQA examples. Even for the mod-
els achieving human-level performance in EQA,
they still need some MCQA examples with correct
choices being labeled for fine-tuning. Although
Keskar et al. (2019); Raffel et al. (2020) proposed
the unified question answering model, they require
unifying the multiple tasks to span extraction task.

The semi-supervised MCQA model training ap-
proach has been proposed (Chung et al., 2018),
in which an initial MCQA model is used to an-
swer the unlabelled questions to generate pseudo
labeled data. Then pseudo labeled data is used to
fine-tune the MCQA model to improve the perfor-
mance. However, the initial MCQA model still
needs some labeled examples to train.

In this paper, we study the possibility of unsu-
pervised MCQA. Instead of starting from an ini-
tial MCQA model (Chung et al., 2018), here, the
machine starts with some prior knowledge. For
example, a choice has a higher probability of be-
ing correct if the choice has word overlap with
the document and question. With the basic rule,
the machine knows that some choices have higher
probabilities of being correct than others, and some
choices can be ruled out. With these basic rules,



an MCQA model can be trained without any la-
beled MCQA examples. With this approach, we
got absolute gains of 4∼9% accuracy compared to
the baseline methods on two MCQA benchmark
corpora, RACE and MC500.

2 Unsupervised MCQA

We consider MCQA where we are given a ques-
tion q, a passage p and a set of choices C =
{c1, c2, ...cn}, where n is the number of choices,
and machine needs to select an answer a ∈ C.

We propose to address an unsupervised MCQA
in a two-stage approach (Figure 1). First, we pick
the candidate set T from choices by fundamental
rule from human knowledge (sliding window) or a
model trained without MCQA data (EQA model).
Second, we train a model to pick the final answer
from the candidates.

2.1 Candidates Choosing

The candidate selection approaches give a score
to each choice which represents the likelihood of
being correct. We use two systems to calculate
the scores, one using simple lexical features and
another using a pre-trained EQA model. A choice
is selected into candidate set T if the choice’s score
is higher than a threshold t, and is the top k scores
among all the choices {c1, c2, ...cn} of a question q.
In this way, each question has at most k candidates
in T . k should be smaller than n (k < n) to rule
out some less likely choices. A question will not
have any choice in T if none of its choices pass the
threshold t. Both t and k are the hyperparameters.
Note that our methods do not guarantee the answer
must be in the candidate set. The candidate sets are
only used during training, and we do not need to
choose candidates when testing.

Sliding Window (SW) We follow the sliding
window algorithm in Richardson (2013), match-
ing a bag of words constructed from the question
and choices to the passage to compute the scores
of choices. The algorithm’s details are shown in
Algorithm 1.

EQA Matching In this setting, we use a pre-
trained EQA model as our reference. Given a
passage and a question, the EQA model outputs
an answer A, which is a text span from the pas-
sage. Then we use a string-matching algorithm to
compute the similarity between A and each can-
didate c, and the similarity serves as the score for

each candidate. Gestalt Pattern Matching (Ratcliff
and Metzener, July 1988) algorithm is the string-
matching algorithm used here. The algorithm’s
details are shown in Appendix B.

2.2 Learning Methods
The candidates T selected in the last subsection are
used as the ground truth to train an MCQA model.
Because the candidates are not always correct, and
each question can have multiple choices selected
in the candidate set, the typical supervised learning
approaches cannot be directly applied here. There-
fore, the following learning methods are explored
to form our objective function L for training the
MCQA model from the candidates.

Highest-Only

L = − logP (cmax | p; q) ,
where cmax is the choice of a question q in the can-
didate set with the highest score. The approach here
has no difference from typical supervised learning,
except that the ground truth is from the candidate
selection approaches, not human labeling.

Maximum Marginal Likelihood (MML)

L = − log
∑
ci∈T

P (ci | p; q)

In this objective, all the choices in the candidate
set are considered correct. The learning target of
the MCQA model is to maximize the probabilities
that all the choices in the candidate set are labeled
as correct. If there are more correct choices than
the incorrect ones in the candidate set, the impact
of the wrong choices in the candidate set can be
mitigated.

Hard-EM Proposed by Min et al. (2019), this
can be viewed as a variant of MML,

L = − logmax
ci∈T

P (ci | p; q)

The underlying assumption of this objective can be
understood as follows. For a question q, several
choices are selected in the candidate set. Although
we don’t know which one is correct, we assume
one of them is correct. Therefore, we want the
MCQA model to learn to maximize the probability
of one of the choices for a question.

3 Experiments Setup

To evaluate the proposed method’s effectiveness
compared to supervised learning and other ap-
proaches that do not require training data, we



RACE RACE-M RACE-H MC500 MC500-One MC500-Multi.
dev test dev test dev test dev test dev test dev test

Starting from SW Matching Algorithm

SW 30.8 30.2 36.2 35.2 28.4 28.1 46.5 42.8 36.7 43.7 54.5 42,1
Highest-Only 31.8 30.8 37.5 36.4 29.4 28.5 46.0 42.3 44.4 41.5 47.2 43.0
MML 34.0 33.1 40.3 40.5 31.4 30.1 50.0 45.3 46.6 44.4 52.7 46.1
Hard-EM 34.3 34.0 41.0 41.2 31.5 31.0 51.5 45.7 44.4 47.7 57.3 44.0

Starting from EQA Matching Algorithm

EQA Match 32.3 32.2 40.3 40.5 28.9 28,8 62.5 64.1 75.6 80.9 51.8 49.8
Highest-Only 37.0 36.9 48.8 46.1 32.1 33.1 67.5 60.6 67.7 66.0 67.2 56.0
MML 38.6 39.4 49.7 49.6 34.0 35.2 65.5 61.3 67.8 67.1 63.6 56.3
Hard-EM 39.1 39.2 49.0 49.7 35.0 34.9 66.0 63.3 68.9 66.0 63.6 60.9

Supevised 64.9 65.5 70.0 71.0 64.0 63.3 70.0 64.3 75.6 69.0 60.4 65.4

Table 1: Results on RACE and MC500 of MCTest. The evaluation measure is accuracy (%). The Supervised
Learning was training with ground truth and used the same hyperparamter as others.

RACE MC500
dev test dev test

SW Matching Algorithm

(A) Avg. num. of candidates 3 3 1.98 1.85
(B) Percent Including Ans. 79.2 79.0 67.0 62.1
(B) / (A) 26.4 26.3 33.8 33.6

EQA Matching Algorithm

(A) Avg. num. of candidates 1.35 1.38 1.63 1.62
(B) Percent Including Ans. 40.9 41.8 73.0 71.5
(B) / (A) 30.3 30.3 44.8 44.1

Table 2: The average size of candidate sets chosen by
EQA and SW Matching. Percent Including Answer
means the percent of candidate set including the labeled
answer. (B) / (A) is the accuracy of randomly selecting
a choice from a candidate set.

EQA SW RACE-train MC500-train
3 7 29759 202
7 3 8461 194

Table 3: Candidate Set Analysis of RACE and
MC500 of MCTest. Case1: candidates chosen by
EQA including the answer but candidates chosen by
SW not including the answer. Case2: candidates cho-
sen by SW including the answer but candidates chosen
by EQA not including the answer.

experiment on two MCQA tasks, RACE and
MCTest(MC500).

3.1 Datasets

RACE Lai et al. (2017b) introduced the RACE
dataset, collected from the English exams for mid-
dle and high school Chinese students. RACE con-
sists of near 28000 passages and nearly 100000
questions. Specifically, the dataset can be split into
two parts: RACE-M, collected from English exam-
inations designed for middle school students; and
RACE-H, collected from English examinations de-

signed for high students. RACE-H is more difficult
than RACE-M; the length of the passages and the
vocabulary size in the RACE-H are much larger
than that of the RACE-M.

MC500 Richardson (2013) present MCTest
which requires machines to answer multiple-choice
reading comprehension questions about fictional
stories. MCTest has two variants: MC160, which
contains 160 stories, and MC500, which contains
500 stories. Moreover, MC500 can be subdivided
into MC500-One and MC500-Multi. MC500-One
refers to the questions that can be answered with
one sentence. MC500-Multi refers to the questions
that need evidence in multiple sentences to answer.

The length of each story is approximately 150
to 300 words, and the topic of a story is a wide
range. In our experiment, we evaluate our model
on MC500 since there are only 280 questions in
the MC160, which is not suitable in our setting.

Appendix A shows more details about both
datasets.

3.2 Model Description

In this work, we used BERT-base (Devlin et al.,
2019) as the pre-trained model for both the EQA
system and the MCQA system in the following
experiments.

EQA model The hyperparameters we used are
the same as the official released for training
SQuAD 1.1. For both datasets, the EQA model
is trained on SQuAD 1.1.

MCQA Model To fine-tune the BERT model
on the MCQA datasets, we construct four in-
put sequences, each containing the concatena-
tion of the passage, the question, and one of the



choices (Zellers et al., 2018). The separator to-
kens [SEP] are added between the passage and
the question. Next, we fed the [CLS] token rep-
resentation to the classifier and got the scores for
each choice.

4 Experiment Results

Table 1 shows the results of baselines and our meth-
ods on RACE and MC500.

RACE Our methods outperform SW and EQA
Match across all the datasets with absolute gain
4∼9% accuracy, which shows the MCQA model
can improve itself from the noisy candidate sets.
MML and Hard-EM outperform Highest-Only in
all cases, which indicates that relying only on the
single choice with the highest score is insufficient.
The improvement with EQA Matching Algorithm
is more significant than with SW Matching Algo-
rithm. This implies Candidates Choosing stage
plays a significant role in the performance; more
details will be discussed later.

MC500 With the SW Matching algorithm, our
methods outperform the performance baseline
across all the datasets with absolute gains of 1∼5%
accuracy. With the EQA Matching Algorithm,
because on MC500, EQA has achieved a com-
parable result with supervised learning, the pro-
posed approaches do not further improve EQA.
The performance of our method drops in MC500-
One because EQA models can better capture the
information within a sentence than multiple sen-
tences, leading MC500-One performance much
better than MC500-Multi with EQA models. On
the other hand, we improve the performance of
MC500-Multiple by about 12%. This shows that
our method can further improve EQA in the more
difficult examples that the EQA model cannot an-
swer correctly.

5 Analysis

Candidate Set & Matching Methods Table 2
shows the average size of candidate sets chosen by
EQA and SW Matching, and their Percent Includ-
ing Answer, that is, the percent of candidate set
including the correct answer. The Percent Includ-
ing Answer is much better for SW than EQA on
RACE because the candidate sets selected by SW
are larger than EQA. We find that EQA gives more
concentrated confidence scores to the choices than
SW, leading to smaller candidate sets. Although

(a) EQA Matching and hard-
em approach

(b) SW Matching and hard-
em approach

Figure 2: Accuracy (%) on different type of question

the Percent Including Answer of SW is larger than
by EQA (Table 2), the candidates picked by EQA
have higher quality than candidates picked by SW,
as shown in Table 3.

Table 2 implies that MCQA models from the
proposed learning strategy do not just randomly
choose a prediction from the candidates. The per-
formance of the proposed approaches in Table 1
is much higher than the performance of randomly
sampling from the candidate set, that is, (B) / (A)
in Table 2.

Question Types To see how our learning method
works with respect to the type of question, we di-
vided the questions in RACE into six types: why,
what, where, when, who, and how. We choose
to analyze RACE because it has more questions
than MC 500. Figure 2 shows the accuracy of each
question types. The results show that the proposed
approach does not favor specific types of questions.
We found that no matter the candidate set selection
methods, the proposed method improved all types
of questions, except "where" for EQA and "when"
for SW. Understanding why some question types
do not been improved by unsupervised MCQA in
some cases is our future work.

6 Conclusion

In this paper, we proposed an unsupervised MCQA
method, which exploits the pseudo labels gener-
ated by some basic rules or external non-MCQA
datasets. The proposed method significantly out-
performs the baseline approaches on RACE and
is even comparable with the supervised learning
performance on MC500. We hope this paper sheds
light on unsupervised learning in NLP tasks.
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A Dataset Details

RACE
train dev test

RACE-M 25421 1436 1436
RACE-H 62445 3451 3698

MC500
train dev test

MC500-One 564 90 277
MC500-Multi 636 119 323

Table 4: Number of examples in RACE and MC500
of MCTest. RACE-M and MC500-One are easier than
RACE-H and MC500-Multi separately.

B Matching Algorithms

Algorithm 1: Sliding Window
Input :Threshold t, max numbers of

candidates k, a set of passage words
P , set of words in question Q, and
a set of words in choices C1...n.

Define :Count(w) :=
∑

i 1(Pi = w)
where Pi is the i-th word in passage
P ;

Define :IC(w) := log
(
1 + 1

Count(w)

)
candidates← Array[]
for i = 1 to n do

S ← Ci ∪Q

scorei ←

max
j=1...|P |

∑
w=1...|S|

{
IC(Pj+w), if Pj+w ∈ S
0, otherwise

if scorei ≥ t then
candidates.append((i, scorei))

sort candidates descending by score
return first k elements of candidates

C Training Details

We finetuned all models with a linear learning rate
decay schedule with 1000 warm-up steps. The
batch size is 32, and the max length of the input
size is 320. For RACE, we set the threshold to
0, the max number of candidates to 3 with SW
Matching, and set the threshold to 50, the max
number of candidates to 3 with the EQA Matching.
For MC500, we set the threshold to 3, the max
number of candidates to 2 with SW Matching, and

Algorithm 2: EQA Matching
Input :Threshold t, max numbers of

candidates k, a set of passage words
P , set of words in question Q, and
a set of words in choices C1...n and
a pre-trained EQA model M

candidates← Array[]
A←M.predict(P,Q)
for i = 1 to n do

scorei ← Gestalt Pattern Matching(A,Ci)

if scorei ≥ t then
candidates.append((i, scorei))

sort candidates descending by score
return first k elements of candidates

the threshold to 50, the max number of candidates
to 3 with the EQA Matching.

Following Min et al. (2019), when we use hard-
EM as objective, we perform annealing: at train-
ing step t, the model use MML as objective with
a probability of min(t/τ, 0.8) and otherwise use
hard-EM, where τ is a hyperparameter. We tried
τ = 1000, 4000, and 8000.


