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Abstract

This work demonstrates that using the ob-
jective with independence assumption for
modelling the span probability P (as, ae) =
P (as)P (ae) of span starting at position as
and ending at position ae has adverse effects.
Therefore we propose multiple approaches to
modelling joint probability P (as, ae) directly.
Among those, we propose a compound ob-
jective, composed from the joint probability
while still keeping the objective with indepen-
dence assumption as an auxiliary objective.
We find that the compound objective is con-
sistently superior or equal to other assump-
tions in exact match. Additionally, we iden-
tified common errors caused by the assump-
tion of independence and manually checked
the counterpart predictions, demonstrating the
impact of the compound objective on the real
examples. Our findings are supported via ex-
periments with three extractive QA models
(BIDAF, BERT, ALBERT) over six datasets
and our code, individual results and manual
analysis are available online1.

1 Introduction

The goal of extractive question answering (EQA)
is to find the span boundaries – the start and the
end of the span from text evidence, which answers
a given question. Therefore, a natural choice of
the objective to this problem is to model the prob-
abilities of the span boundaries. In the last years,
there was a lot of effort put into building better
neural models underlying the desired probability
distributions. However, there has been a little
progress seen towards the change of the objective
itself. For instance, the “default” choice of objec-
tive for modelling the probability over spans in
SQuADv1.1 (Rajpurkar et al., 2016) – maximiza-
tion of independent span boundary probabilities
P (as)P (ae) for answer at position 〈as,ae〉 – has

1https://github.com/KNOT-FIT-BUT/
JointSpanExtraction.

stayed the same over the course of years in many
influential works (Xiong et al., 2017; Seo et al.,
2017; Chen et al., 2017; Yu et al., 2018; Devlin
et al., 2019; Cheng et al., 2020) since the earli-
est work on this dataset – the submission of Wang
and Jiang (2017). Based on the myths of worse
performance of different objectives, these works
adopt the deeply rooted assumption of indepen-
dence. However, this assumption may lead to ob-
viously wrong predictions, as shown in Figure 1.

Question: What was the name of atom bomb dropped by
USA on Hiroshima?
Passage: ...The Allies issued orders for atomic bombs to be
used on four Japanese cities were issued on July 25. on
August 6, one of its b - 29s dropped a little boy uranium gun-
type bomb on Hiroshima. three days later, on August 9, a fat
man plutonium implosion-type bomb was dropped by
another b - 29 on Nagasaki...
Ground truth: little boy

 P Predictions from BERT-base
33.3 little boy uranium gun-type bomb on Hiroshima.

three days later, on August 9, a fat man
32.15 little boy
23.51 fat man
3.60 a fat man
2.08 a little boy uranium gun - type bomb on hiroshima.

three days later, on august 9, a fat man
1.03 a little boy

Figure 1: An example of an error which comes with
an independence assumption. The model assigns high
probability mass to boundaries around “little boy”, and
“fat man” answers. However, during decoding, the start
of one and the end of another answer is picked up.

In addition, this assumption leads to degenerate
distribution P (as, ae), as high probability mass is
assigned to many trivially wrong2 answers.

Some of the earlier work (Wang and Jiang, 2017;
Weissenborn et al., 2017) and recent approaches
including large language representation models

2We define ’trivially wrong’ as not resembling any string
form human would answer, e.g., the first or the second last
answer of Figure 1.

https://github.com/KNOT-FIT-BUT/JointSpanExtraction
https://github.com/KNOT-FIT-BUT/JointSpanExtraction


(LRMs) like XLNet (Yang et al., 2019), ALBERT
(Lan et al., 2020) or ELECTRA (Clark et al., 2020)
started modelling the span probability via con-
ditional probability factorization P (ae|as)P (as).
However, is it unknown whether this objective im-
proves any performance at all, as almost none of
the recent works reported results on its effect, not
even described its existence (except ELECTRA pa-
per). Additionally, this objective requires beam
search which slows down inference in test time.
Exceptionally, Lee et al. (2016) proposed one way
for modelling P (as, ae) directly, but the approach
was only sparsely adopted (Lee et al., 2019; Khat-
tab et al., 2020). This may be caused by the belief,
that enumerating all possible spans has a large com-
plexity (Cheng et al., 2021). However, in practice
we find the complexity to be often similar to as-
sumption of independence, when implementing the
objective efficiently. We continue the in-depth dis-
cussion on complexity in Appendix C.

In this work, we try to break the myths about the
objectives that have been widely used previously.
We experiment with joint objective and we also
introduce a new compound objective, that deals
with modelling joint probability P (as, ae) directly
while keeping the traditional independent objective
as an auxiliary objective. We experiment with 5
different joint probability function realisations and
find that with current LRMs, simple dot product
works the best. However, we show that this is not a
rule, and for some models, other function realisa-
tions might be better. The conducted experiments
demonstrate that using compound objective is supe-
rior to previously used objectives across the various
choices of models or datasets.

In summary, our work contributions are:

• introduction of the compound objective and
its comparison with the traditional objectives
based on assumption of independence, condi-
tional probability factorization, or direct joint
probability,

• a thorough evaluation on the wide spectrum
of models and datasets comparing different
objectives supported by statistical tests,

• a manual analysis which provides closer look
on the different impacts of independent and
compound objectives.

2 Probabilistic Assumptions for the
Answer Span

This section describes the common approach to the
EQA, with its independent modelling of the answer
span start and end positions. Secondly, it defines
an assumption based on conditional factorization
of span probability. Finally a function family for
computing joint span probability and a combination
of independent and joint assumption we call the
compound objective are proposed.

The EQA can be defined as follows: Given a
question q and a passage or a set of passages D,
find a string a from D such that a answers the
question q. This can be expressed by modelling a
categorical probability mass function (PMF) that
has its maximum in the answer start and end indices
a = 〈as, ae〉 from the passage D as P (as, ae|q,D)
for each question-passage-answer triplet (q,D, a)
from dataset D. The parameters θ of such model
can be estimated by minimizing maximum likeli-
hood objective

−
∑

(q,D,a)∈D

logPθ(as, ae|q,D). (1)

During inference, the most probable answer span
〈as, ae〉 is predicted. Although there are works
that were able to model the joint probability ex-
plicitly (Lee et al., 2016), modelling it directly re-
sults in a number of categories quadratic to the
passage’s length. Optimizing such models may be
seen challenging, as there are often more classes
than the amount of data points within the current
datasets. Therefore, state-of-the-art approaches re-
sort to independence assumption P (as, ae|q,D) =
Pθ(as|q,D)Pθ(ae|q,D). The factorized PMFs are
usually computed by the model with shared param-
eters θ, as introduced in Wang and Jiang (2017).
For most of the systems modelling the independent
objective with neural networks, the final endpoint
probabilities3 are derived from start/end position
passage representations computed via shared model
Hs,He ∈ Rd×L as shown for b ∈ {s, e}.

Pθ(ab) = softmax(w>b Hb + bb) (2)

The passage representations Hs,He are often pre-
softmax layer representations from neural network
with passage and question at the input. Symbols d
and L denote the model-specific dimension and the
passage length, respectively.

3For brevity, q,D dependencies are further omitted and
bias terms are broadcasted along dimension L.



Occasionally, the conditional factorization
P (as, ae|q,D) = Pθ(as)Pθ(ae|as) is considered
instead. The probabilities of span’s start and
end are computed the same way as in equation
2. The difference is in the end representations
He = f(as), which now must be the a function of
span’s start as.

2.1 Joint Assumptions

However, one does not need to apply simplifying
assumptions and instead compute joint probability
directly. We define a family of joint probability
functions Pθ(as, ae) with an arbitrary vector-to-
vector similarity function fsim used for obtaining
each span score (e. g., the dot product H>s He)4.

Pθ(as, ae) = softmax(vec(fsim(Hs,He)))
(3)

Finally, we define a multi-task compound ob-
jective (4) composing the joint and independent
probability formulations, computed via a shared
model θ.

−
∑

(q,D,a)∈D

logPθ(as, ae)Pθ(as)Pθ(ae) (4)

Here P (as)P (ae) can be seen as a auxiliary objec-
tive for the more complex joint objective Pθ(as, ae)
used for decoding in test time. Empirically, we
found the compound objective to be superior or
equal to other assumptions.

3 Experimental Setup

We use Transformers (Wolf et al., 2019) for lan-
guage representation model (LRM) implementa-
tion. Our experiments were done on 16GB GPUs
using PyTorch (Paszke et al., 2019). For experi-
ments with LRMs, we used Adam optimizer with
a decoupled weight decay (Loshchilov and Hutter,
2017). The used hyperparameters were the same
as the SQuADv1.1 default hyperparameters as pro-
posed by specific LRM authors through all our
datasets. For BIDAF, we tuned hyperparameters
using Hyperopt (Bergstra et al., 2013) separately
for independent and compound objectives5. See
Appendix D for further details.

In all our experiments, we apply length filtering
(LF). Therefore, probabilities P (as = i, ae = j)

4Here, we slightly abuse the notation for the sake of gener-
ality. See Subsection 3.2 for specific applications.

5We used fmadd similarity during parameter tuning.

are set to 0 iff j − i > ζ, where ζ is a length
threshold. Following Devlin et al. (2019), we set
ζ = 30 in all of our experiments.

3.1 Similarity Functions

Here we sum up the definitions of similarity func-
tions presented in the paper. We experimented with
5 similarity functions. For each start representa-
tion hs ∈ Rd and end representation he ∈ Rd,
both column vectors from the matrix of boundary
vectors Hs, He ∈ Rd×L respectively. Note that
d here is model specific dimension, L is passage
length, ◦ denotes elementwise multiplication and
; denotes concatenation. The similarity functions
above these representations are defined as:

• A dot product:

fdot(hs,he) = hs
>he (5)

• A weighted dot product:

fwdot(hs,he) = w>[hs ◦ he] (6)

• An additive similarity:

fadd(hs,he) = w>[hs;he] (7)

• An additive similarity combined with
weighted product:

fmadd(hs,he) = w>[hs;he;hs ◦ he] (8)

• A multi-layer perceptron (MLP) as proposed
by Lee et al. (2019):

fMLP (hs,he) = w>σ(W [hs;he]+b)+b2
(9)

where σ(x) = ln(relu(x)) and ln denotes
layer normalization (Ba et al., 2016).

3.2 Applied Models

Our experiments are based on three EQA models:
BERT-base (Devlin et al., 2019) and ALBERT-
xxlarge (Lan et al., 2020) are LRMs based on
the self-supervised pretraining objective. Dur-
ing fine-tuning, each model receives the concate-
nation of question and passage are given as in-
put. Outputs H ∈ Rd×L corresponding to the
passage inputs of length L are then reduced to
boundary probabilities by two vectors ws, we as
P (ab) = softmax(w>b H + bb) where b ∈ {s, e}.



To compute joint probability P (as, ae), start rep-
resentations are computed using W ∈ Rd×d and
b ∈ Rd (broadcasted) as Hs = WH + b and end
representations as He = H . A dot product fdot is
used as the similarity measure.

P (as, ae) = softmax(vec(H>s He)) (10)

For modelling conditional probability factorization
objective, we follow the implementation from (Lan
et al., 2020), and provide exact details in the Ap-
pendix B.
BIDAF (Seo et al., 2017) dominated the state-of-
the-art systems in 2016 and motivated a lot of fol-
lowing research work (Clark and Gardner, 2018;
Yu et al., 2018). Question and passage inputs are
represented via the fusion of word-level embed-
dings from GloVe (Pennington et al., 2014) and
character-level word embeddings obtained via a
convolutional neural network. Next, a recurrent
layer is applied to both. Independently represented
questions and passages are then combined into a
common representation via two directions of atten-
tion over their similarity matrix S. The similarity
matrix is computed via multiplicative-additive in-
teraction (11) between each pair of question vec-
tor qi and passage vector pj , where ; denotes con-
catenation and ◦ stands for the Hadamard product.

Sij = fmadd(qi,pj) = w>[qi;pj ; qi ◦pj ] (11)

Common representations are then concatenated to-
gether with document representations yielding G
and passed towards two more recurrent layers pro-
ducing M and M2 – first to obtain answer-start
representations Hs = [G;M ] and second to ob-
tain answer-end representations6 He = [G;M2].
The joint probability P (as, ae) is then computed
over scores from vectorized similarity matrix of
Hs and He using the 2-layer feed-forward net-
work fMLP as a similarity function.

3.3 Datasets

We evaluate our approaches on a wide spectrum of
datasets. We do not split development datasets, as
we use fixed hyperparameters with fixed amount
of steps and use last checkpoint for our LRM ex-
periments. This also makes our results directly
comparable to other works (Devlin et al., 2019;
Lan et al., 2020). The statistics to all datasets are

6For details, see formulae 2 to 4 in Seo et al. (2017).

Dataset Train Test
SQuADv1.1 87,599 10,570
SQuADv2.0 130,319 11,873

Adversarial SQuAD - 3,560
Natural Questions 104,071 12,836

NewsQA 74,160 4,212
TriviaQA 61,688 7,785

Table 1: Number of examples per each dataset used in
this paper.

shown in Table 1. To focus only on the extractive
part of QA and to keep the format the same, we use
curated versions of the last 3 datasets as released
in MrQA shared task (Fisch et al., 2019).

SQuADv1.1 (Rajpurkar et al., 2016) is a popular
dataset composed from question, paragraphs and
answer span annotation collected from the subset
of Wikipedia passages.

SQuADv2.0 (Rajpurkar et al., 2018) is an exten-
sion of SQuADv1.1 with additional 50k questions
and passages, which are topically similar to the
question, but do not contain an answer.

Adversarial SQuAD (Jia and Liang, 2017)
tests, whether the system can answer questions
about paragraphs that contain adversarially inserted
sentences, which are automatically generated to
distract computer systems without changing the
correct answer or misleading humans. In particular,
our system is evaluated in ADDSENT adversary set-
ting, which runs the model as a black box for each
question on several paragraphs containing different
adversarial sentences and picks the worst answer.

Natural Questions (Kwiatkowski et al., 2019)
dataset consists of real users queries obtained from
Google search engine. Each example is accompa-
nied by a relevant Wikipedia article found by the
search engine, and human annotation for long/short
answer. The long answer is typically the most rel-
evant paragraph from the article, while short an-
swer consists of one or multiple entities or short
text spans. We only consider short answers in this
work.

NewsQA (Trischler et al., 2017) is a crowd-
sourced dataset based on CNN news articles. An-
swers are short text spans and the questions are
designed such that they require reasoning and in-
ference besides simple text matching.

TriviaQA (Joshi et al., 2017) consists of
question-answer pairs from 14 different trivia quiz
websites and independent evidence passages col-



lected using Bing search from various sources such
as news, encyclopedias, blog posts and others.
Additional evidence is obtained from Wikipedia
through entity linker.

3.4 Statistical Testing
To improve the soundness of the presented results,
we use several statistical tests. An exact match
(EM) metric can be viewed as an average of sam-
ples from Bernoulli distribution. As stated via cen-
tral limit theorem, a good assumption might be the
EM comes from the normal distribution. We train
10 models for each presented LRM’s result, obtain-
ing 10 EMs for each sample. Anderson-Darling
normality test (Stephens, 1974) is used to check
this assumption – whether the sample truly comes
from the normal distribution. Then we use the one-
tailed paired t-test to check whether the case of
improvement is significant. The improvement is
significant iff p-value < 0.05. We use the reference
implementation from Dror et al. (2018).

4 Results and Discussion

We now show the effectiveness of proposed ap-
proaches. Each of the presented results is averaged
from 10 training runs.

EM F1 EM F1
I 66.16 76.19 81.31 88.65

I+J BIDAF BERT
fdot 64.30 73.84 81.83 88.52
fadd 66.04 75.10 81.52 88.47
fwdot 66.10 75.16 81.35 88.29
fmadd 66.11 75.23 81.45 88.44
fMLP 66.96 75.90 81.61 88.44

Table 3: A comparison of similarity functions in the
models trained via compound objective (I+J) and inde-
pendent objective (I).

Similarity functions. We analyzed an effect
of different similarity functions over all models
in Table 3. We found different similarity func-
tions to work better with different architectures.
Namely, for BIDAF, most of similarity functions
work equally or worse than independent objec-
tive. Exceptionally, fMLP works significantly
better. This is surprising especially because we
tuned the hyperparameters with the fmadd func-
tion. For BERT, most of the similarity functions
performed better than the independent objective
and simple dot-product fdot improved significantly

better above all. We choose fMLP for BIDAF and
fdot for our LRMs for the rest of experiments.

Comparison of objectives. Our main results –
the performance of independent (I), joint (J), joint-
conditional (JC) and compound (I+J) objectives
– are shown in Table 2. We note the largest im-
provements can be seen for an exact match (EM)
performance metric. In fact, in some cases ob-
jectives modelling joint PMF lead to degradation
of F1, while improving EM (e.g., on SQuADv1.1
and NewsQA datasets for BERT). Upon manual
analysis of BERT’s predictions based on 200 differ-
ences between independent and compound models
on SQuADv1.1, we found that in 10 cases (5%)
the independent model chooses larger span encom-
passing multiple potential answers, thus obtaining
non-zero F1 score. In 9 out of 10 of these cases,
we found the compound model to pick just one
of these potential answers7, obtaining either full
match or no F1 score at all. We found no cases of
compound model encompassing multiple potential
answers in analyzed sample.

Next, we remark that compound objective out-
performed others in most of our experiments. In
BERT case, the compound objective performed
significantly better than independent objective on
5 out of 6 datasets. In ALBERT case, the com-
pound objective performed significantly better than
independent objective 5 from 6 times and it was
on par in the last case. Comparing compound
to joint objective in BERT case, the two behave
almost equally, with compound objective signif-
icantly outperforming joint objective on the two
SQuAD datasets and no significant differences for
the other 4 datasets. However, in ALBERT case,
the compound objective significantly improves re-
sults over joint objective in all but one case and is
on par in this last case.

Conditional objective. Our implementation of
the conditional objective performs even or worse
than independent objective in most cases. Upon
investigation we found the model tends to be over-
confident about start predictions and underconfi-
dent about its end predictions, often assigning high
probability to single answer-start. In Table 5, we an-
alyze the top-5 most probable samples from BERT
on each example of SQuADv1.1 dev data. We
found that on average the conditional model kept it
top-1 start prediction in 90% of subsequent top-2

7For instance, in Table 7, row 4, column 3, we consider
2,000; 40,000; 2,200; 1,294 and 427 as potential answers.



Model Obj SQ1 SQ2 AdvSQ TriviaQA NQ NewsQA

BERT

I 81.31/88.65 73.89/76.74 47.04/52.62 62.88/69.85 65.66/78.20 52.39/67.17
J 81.33/88.13 72.66/75.04 48.10/53.54 63.93/69.90 67.75/78.70 52.73/66.41

JC 81.22/88.29 71.51/74.38 46.07/51.35 62.82/69.94 66.48/77.34 52.39/67.05
I+J 81.83/88.52 73.53/76.14 48.32/53.47 63.73/69.75 67.75/78.81 52.96/66.83

ALBERT

I 88.55/94.62 87.07/90.02 68.12/73.54 74.7/80.33 70.78/83.42 59.95/75.0
J 88.84/94.64 86.87/89.71 68.90/74.17 75.11/80.41 73.36/84.01 60.19/74.28

JC 88.60/94.59 86.78/89.73 68.0/73.25 - 72.33/83.35 58.52/72.74
I+J 89.02/94.77 87.13/89.98 69.57/74.76 75.31/80.43 73.32/84.08 60.41/74.46

Table 2: EM/F1 results of different objectives through the spectrum of datasets. Bold results mark best EM across
the objectives. Italicised I+J results mark significant improvement over the independent objective.

Model I J JC I+J

BIDAF
- 65.85/75.94 - - 66.95/75.89

LF 66.16/76.19 58.24/67.42 - 66.96/75.90

BERT
- 80.98/88.40 81.30/88.11 81.16/88.25 81.80/88.50

LF 81.31/88.65 81.33/88.13 81.22/88.29 81.83/88.52

ALBERT
- 88.39/94.51 88.82/94.64 88.57/94.57 89.01/94.77

LF 88.55/94.63 88.84/94.64 88.60/94.59 89.02/94.77

Table 4: SQuADv1.1 EM/F1 results with length filtering (LF) computed from the same set of checkpoints. Differ-
ences larger than 0.1 are in bold.

to top-5 less probable answers, but kept its top-1
end prediction only in 4% of top-2 to top-5 subse-
quent answers. We found this statistic to be on par
for start/end prediction for different objectives. In-
terestingly, the table also reveals that independent
objective contains less diverse start/end tokens than
joint objectives.

Model Start Token End Token
I 43.76% 45.66%

JC 90.12% 3.9%
J 33.71% 35.91%

I+J 34.95% 37.27%

Table 5: Proportion of samples, on which top-1 predic-
tion start/end token was kept as start/end token also in
top-2 to top-5 subsequent predictions.

Large improvements and degradation. Upon
closer inspection of results, we found possible rea-
sons for result degradation of the compound model
on SQuADv2.0, and also its large improvements
gained on NQ dataset.

For SQuADv2.0, the accuracies of no-answer de-
tection for independent/joint/compound objectives
in case of BERT models are 79.89/78.12/79.32.
We found the same trend for ALBERT. We hypoth-
esize, that this inferior performance of joint and

Objective EM F1

BERT
I 80.70 88.71
J 81.38 81.51

I+J 81.51 88.69

ALBERT
I 87.40 94.10
J 87.74 94.31

I+J 87.90 94.38

Table 6: Performance of SQuADv2.0 models on an-
swerable examples of SQuADv2.0.

compound models may be caused by the model
having to learn a more complex problem of K2

classes of all possible spans over input document,
which is often more (e.g. for K = 512) than the
size of the datasets, leaving the less of “model
capacity” to this another task. To confirm that com-
pound model is better at answer extraction step, we
run all 10 checkpoints trained on SQuADv2.0 data
with an answer, while masking model’s no-answer
option. The results shown in Table 6 support this
hypothesis.

On the other side, we found the large improve-
ments over NQ might be exaggerated by the eval-
uation approach of MRQA, wherein the case of
multi-span answers, choosing one of the spans from
multi-span answer counts as correct. Upon closer



result inspection, we found that the independent
model here was prone to select the start of one
span from multi-span answer and end of different
span from multi-span answer. To quantify this be-
havior, we annotated 100 random predictions with
multi-span answers in original NaturalQuestions on
whether they pick just one span from multi-span an-
swer (which follows from the MRQA formulation)
or they encompass multiple spans. For indepen-
dent/compound objectives we found 59/77 cases
of picking just one of the spans and 22/4 cases of
encompassing multiple spans from multi-span an-
swer for BERT model and 57/81 and 33/10 cases
for ALBERT respectively.

Length filtering heuristic. Additionally, we
found the benefit from the commonly used length
filtering (LF) heuristic is negligible for models
trained via any joint objective, as shown in Table 4.
Therefore, we find it unnecessary to use the heuris-
tic anymore. In this experiment, we also include
our results with BIDAF, which show significant im-
provement of compound objective on SQuADv1.1
dataset from other approaches.

5 Analysis

Apart from example in Figure 1, we provide more
examples of different predictions8 between models
trained with independent and compound objective
in Table 7. In general, by doing manual analysis of
errors, we noticed three types of trivially wrong er-
rors being fixed by the compound objective model
in BERT:

1. Uncertainty of the model causes it to assign
high probabilities to two different answer
boundaries. During decoding the start/end
boundaries of two different answers are
picked up (fourth row in Table 7).

2. The model assigns high probability to answer
surrounded by the paired punctuation marks
(e. g. quotes). It chooses the answer with-
out respecting the symmetry between paired
punctuation marks (third row of Table 7).

3. Uncertainty of the model causes it to assign
high probabilities to two spans containing the
same answer string. This is the special case of
problem (1) – while the model often chooses
the correct answer, the boundaries of two dif-
ferent spans are selected (first row of Table 7).

8We chose to analyze the different predictions, as the
model is usually more uncertain in these borderline cases.

To quantify an occurrence of these errors, we
study our best BERT and ALBERT checkpoint
predictions for SQuADv1.1 validation data. For
BERT, we found the most frequently occurring is
the error type (1), for which we manually anno-
tated 200 random differences between independent
and compound model predictions. We found 5%
of them to be the case of this error of the indepen-
dent, and no case of this error for the compound
model. Interestingly, 4 out of 10 of these cases were
questions clearly asking about single entity, while
independent model answered multiple entities, e.g.,
Q:Which male child of Ghengis Khan and Börte
was born last? A:Chagatai (1187—1241), Ögedei
(1189—1241), and Tolui. For the error type (2), we
filtered all prediction differences (more than 1300
for BERT and ALBERT) down to cases, where
either independent or compound prediction con-
tained non-alphanumeric paired punctuation marks,
which resulted in less than 30 cases for each. For
BERT, 37% independent predictions from these
cases contained an error type (2), while again no
paired punctuation marks errors were observed for
compound objective.

For the error type (3), we filter prediction differ-
ences down to cases, where independent or com-
pound prediction contained the same prefix and suf-
fix of length at least 2 (only 9 and 5 cases for BERT
and ALBERT). From these, error type (3) occurred
in 3 cases for BERT and in 1 case for ALBERT in
case of independent and again we found no case
for the compound for both models. Note the error
type (3) can be fully alleviated by marginalizing
over probabilities of top-K answer spans during
the inference, as in (Das et al., 2019; Cheng et al.,
2020) (see Appendix E for details). Interestingly,
for ALBERT, we found only negligible amount of
errors of type (1) and (2) for both objectives9.

During manual analysis, we observed that, an
uncertain models with an independent objective are
prone to pick large answer spans. To illustrate, that
spans retrieved with approaches modelling joint
probability differ, we took the top 20 most probable
spans from each model and averaged their length.

This was done for each example in the
SQuADv1.1 test data. The histogram of these aver-
ages is shown in Figure 2. For a fair comparison,
these predictions were filtered via length filtering.

9The full difference of BERT’s and ALBERT’s predictions
and manual analysis can be found in the supplementary.



Question Passage Independent Compound Ground
Truth

What company won a free
advertisement due to the
QuickBooks contest?

QuickBooks sponsored a "Small Business Big Game" contest, in
which Death Wish Coffee had a 30-second commercial aired free
of charge courtesy of QuickBooks. Death Wish Coffee beat out
nine other contenders from across the United States for the free
advertisement.

Death Wish Coffee had
a 30-second commercial
aired free of charge
courtesy of QuickBooks.
Death Wish Coffee

Death Wish
Coffee

Death Wish
Coffee

In what city’s Marriott did
the Panthers stay?

The Panthers used the San Jose State practice facility and stayed
at the San Jose Marriott. The Broncos practiced at Stanford Uni-
versity and stayed at the Santa Clara Marriott.

San Jose State practice fa-
cility and stayed at the San
Jose

San Jose San Jose

What was the first point of
the Reformation?

Luther’s rediscovery of "Christ and His salvation" was the first of
two points that became the foundation for the Reformation. His
railing against the sale of indulgences was based on it.

Christ and His salvation" Christ and
His salvation

Christ and
His salvation

How many species of bird
and mammals are there in
the Amazon region?

The region is home to about 2.5 million insect species, tens of
thousands of plants, and some 2,000 birds and mammals. To date,
at least 40,000 plant species, 2,200 fishes, 1,294 birds, 427 mam-
mals, 428 amphibians, and 378 reptiles have been scientifically
classified in the region. One in five of all the bird species in the-
world live in the rainforests of the Amazon, and one in five of
the fishspecies live in Amazonian rivers and streams. Scientists
have describedbetween 96,660 and 128,843 invertebrate species
in Brazil alone.

2,000 birds and mammals.
To date, at least 40,000
plant species, 2,200 fishes,
1,294 birds, 427

427 2,000

What was found to be at
fault for the fire in the
cabin on Apollo 1 regard-
ing the CM design?

NASA immediately convened an accident review board, over-
seen by both houses of Congress. While the determination of
responsibility for the accident was complex, the review board
concluded that "deficiencies existed in Command Module design,
workmanship and quality control." At the insistence of NASA
Administrator Webb, North American removed Harrison Storms
as Command Module program manager. Webb also reassigned
Apollo Spacecraft Program Office (ASPO) Manager Joseph Fran-
cis Shea, replacing him with George Low.

deficiencies existed in
Command Module design,
workmanship and quality
control."

Harrison
Storms

deficiencies

Table 7: Examples of predictions from SQuADv1.1 using BERT trained with independent and compound objec-
tive.

Figure 2: Histograms of average character length of
top-20 predicted answers from BERT trained with dif-
ferent objectives compared with character length of
ground-truth answers.

6 Related Work

One of the earliest works in EQA from Wang and
Jiang (2017) experimented with generative mod-
els based on index sequence generation via pointer
networks (Vinyals et al., 2015) and now traditional
boundary models that focus on the prediction of
start/end of an answer span. Their work shown sub-
stantial improvement of conditional factorization

boundary models over the index sequence genera-
tive models.

Followup work on EQA (Seo et al., 2017; Chen
et al., 2017; Clark and Gardner, 2018; Yu et al.,
2018; Devlin et al., 2019; Cheng et al., 2020) and
others considered using the assumption of indepen-
dence in their objectives.

Xiong et al. (2017) explored an iterative bound-
ary model. They used RNN and a highway maxout
network to decode start/end of span independently
in multiple timesteps, each time feeding the RNN
with predictions from the previous time step un-
til the prediction was not changing anymore. In
their following work Xiong et al. (2018) combined
their objective with a reinforcement learning ap-
proach, in which the decoded spans from each
timestep were treated as a trajectory. They argued
that cross-entropy is not reflecting F1 performance
well enough, and defined a reward function equal
to F1 score. Finally, they used policy gradients as
their auxiliary objective, showing 1% improvement
in the terms of F1 score.

Authors of recent LRMs like XLNet (Yang et al.,
2019), ALBERT (Lan et al., 2020) or ELECTRA
(Clark et al., 2020) use conditional probability fac-
torization P (ae|as)P (as) for answer extraction in



some cases10. Although the objective is not de-
scribed in mentioned papers (except for ELEC-
TRA), we follow the recipe for modelling the con-
ditional probability from their implementation in
this work. We believe this is the first official com-
parison of this objective w.r.t. others.

The most similar to our work is RASOR sys-
tem (Lee et al., 2016). In their work, authors com-
pared various objectives – binary answer classifi-
cation of every input token, BIO sequence classifi-
cation with CRF layer on top of their model, and
most importantly joint objective, which turns out to
work the best. However, in our experiments, train-
ing with the joint objective alone does not always
perform that well. For BIDAF, we failed to find the
hyperparameters for model to converge to results
similar to different approaches.

7 Conclusion

The paper closely studies the objectives used within
the extractive question answering (EQA). It identi-
fies commonly used independent probability model
as a source of trivially wrong answers. As a rem-
edy it experiments with various ways of learning
the joint span probability. Finally it shows how the
compound objective – the combination of indepen-
dent and joint probability in objective – improves
statistical EQA systems across 6 datasets without
using any additional data. Using the proposed
approach, we were able to reach significant im-
provements through the wide spectrum of datasets,
including +1.28 EM on Adversarial SQuAD and
+2.07 EM on NaturalQuestions for BERT-base. We
performed a thorough manual analysis to under-
stand what happened to trivially wrong answers,
and we found most of the cases disappear. We also
found that independent models tend to “overfit” to
F1 metric by encompassing multiple possible an-
swer spans, which would explain the effect of joint
objectives improving the EM far more significantly
than the F1. We shown the samples from joint
model contain the greatest start/end token diver-
sity. We further hypothesize that having diverse
answers may be especially beneficial towards an-
swer reranking step commonly used in QA (Fajcik
et al., 2021; Iyer et al., 2021). In addition, we also
identified the reason for performance decrease with
compound objective on SQuADv2.0 – no-answer
classifier trained within the same model performs

10For instance, ALBERT uses conditional objective for
SQuADv2.0, but not for SQuADv1.1.

worse – and we leave the solution for this deficiency
for future work.
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A Examples of Answer Span
Distribution

This section provides a deeper insight towards
most probable elements of answer span PMF.

Question: What was the first point of the
Reformation?
Passage: Luther’s rediscovery of "Christ and His
salvation" was the first of two points that became
the foundation for the Reformation. His railing
against the sale of indulgences was based on it.
Ground Truth: Christ and His salvation

Confidence Predictions from BERT-base
59.7 Christ and His salvation"
35.4 Christ and His salvation
2.3 Christ
1.3 "Christ and His salvation"
0.8 "Christ and His salvation
0.1 Christ and His salvation" was
0.1 "Christ

Figure 3: Example of answer span distribution from
model trained via independent objective.

Confidence Predictions from
BERT-base-compound

71.8 Christ and His salvation
10.9 "Christ and His salvation"
4.7 Christ and His salvation"
4.6 Luther’s rediscovery of "Christ

and His salvation
3.1 "Christ and His salvation
1.2 Luther’s rediscovery of "Christ

and His salvation"
0.8 Luther’s rediscovery

Figure 4: Example of answer span distribution from
model trained via compound objective.

Question: How many species of bird and mam-
mals are there in the Amazon region?
Passage: The region is home to about 2.5 million
insect species, tens of thousands of plants, and
some 2,000 birds and mammals. To date, at least
40,000 plant species, 2,200 fishes, 1,294 birds, 427
mammals, 428 amphibians, and 378 reptiles have
been scientifically classified in the region. One
in five of all the bird species in the world live
in the rainforests of the Amazon, and one in five
of the fish species live in Amazonian rivers and
streams. Scientists have described between 96,660
and 128,843 invertebrate species in Brazil alone.
Ground Truth: 2,000

Confidence Predictions from BERT-base
37.0 2,000 birds and mammals. To

date, at least 40,000 plant species,
2,200 fishes, 1,294 birds, 427

34.6 427
27.7 2,000
0.2 1,294 birds, 427
0.2 427 mammals
0.1 2,000 birds
0.1 2,000 birds and mammals

Figure 5: Example of answer span distribution from
model trained via independent objective.

Confidence Predictions from
BERT-base-compound

71.7 427
21.5 2,000
5.1 2,000 birds and mammals. To

date, at least 40,000 plant species,
2,200 fishes, 1,294 birds, 427

0.8 some 2,000
0.2 427 mammals
0.1 1,294 birds, 427
0.1 2,000 birds and mammals. To

date, at least 40,000 plant species,
2,200 fishes, 1,294

Figure 6: Example of answer span distribution from
model trained via compound objective.



B Conditional Objective

Some of the recent LRMs assume conditional fac-
torization of span’s PMF. For comparison with our
joint objective, we reimplemented the conditional
objective used in ALBERT (Lan et al., 2020).

First, the probabilities P (as) for the start posi-
tion are computed in the same manner as for the in-
dependent objective – by applying a linear transfor-
mation layer on top of representations H ∈ Rd×L
from the last layer of the LRM, where d is the
model dimension and L denotes the input sequence
length.

P (as) ∝ exp (w>s H + bs) (12)

During the validation, top k (k = 10 in our ex-
periments) start positions are selected from these
probabilities, while in the training phase, we apply
teacher forcing by only selecting the correct start
position. Representation of i-th start position hi
from the last layer of the LRM corresponding to the
selected position is then concatenated with repre-
sentations corresponding to all the other positions
k = 0..L into matrix C.

C =


— [h0;hi] —
— [h1;hi] —

...
— [hn;hi] —

 (13)

Subsequently, a layer with tanh activation is ap-
plied on this matrix C, followed by a linear trans-
formation to obtain the end probabilities:

P (ae|as = i) ∝ exp (w>c tanh (WC + b′) + b)
(14)

For each start position we again select top k end
positions, to obtain k2-best list of answer spans. In
contrast to the official ALBERT implementation,
we omitted a layer normalization after tanh layer.

C Addressing the Complexity

One may ask what complexity joint modelling ob-
jectives come with independently of the underlying
architecture. Given that L is the length of the in-
put’s passage and d is the model dimension, the
independent objective contains only linear trans-
formation and is in O

(
dL
)

for time and memory,
assuming the multiplication and addition are con-
stant operations. For the rest of this analysis, we
will denote both time and memory complexities

as just complexity, as they are the same for the
analyzed cases.

The conditional objective increases the com-
plexity for both only constantly, having an extra
feed-forward network for end token representations.
However, one may experience a significant com-
putational slowdown, because of the beam search.
Having a beam size k and a minibatch size b, the
end probabilities cannot be computed in parallel
with start probabilities, and have to be computed
for the kb cases.

For the direct joint probability modelling, the
complexity largely depends on the similarity func-
tion. The easiest case is fdot, where in theory the
complexity rises to O

(
dL2

)
, but in practice the dot

product is well optimized and has a barely notice-
able impact on the speed or memory.

For the fadd the complexity is given by the linear
projection H∗w∗ being in O

(
dL
)

and outer sum-
mation of two vectors Hsw1 ⊕Hew2, which is
in O

(
L2
)
, where w = [w1,w2] and H∗ ∈ Rn×d

are the start/end representation matrices. Therefore
the complexity is O

(
dL+ L2

)
. We observed that

in practice this approach is not very different from
fdot, probably due to d being close to L.

Next, a weighted product fwdot can be efficiently
implemented as Hs(w ◦He), where w is broad-
casted over every end representation in He. In this
case, the complexity stays the same as for fdot.

To demonstrate that in practice the speed and
memory requirements between independent and
joint approach are comparable, one BERT epoch
on SQuADv1.1 took about 47 minutes and 4.2GB
of memory with the same batch size 2 on 12GB
2080Ti GPU with both objective variants. We ob-
served the same requirements for all direct joint
probability modelling methods mentioned so far.

Finally, the most complex approach is clearly
fMLP . While an a theoretical time and memory
complexity of an efficient implementation11 is in
O
(
d2L + dL2

)
, the complexity of this approach

can be improved by pruning down the number of
possible spans (and the probability space). Assum-
ing the maximum length of the span is k � L, one
can reduce the complexity to O

(
d2L + dLk

)
(an

approach adopted in Lee et al. (2019)). To illustrate
this complexity, BERT model with the full proba-
bility space on SQuADv1.1 with batch size 2 took
76 minutes per epoch while allocating 8.2GB of

11The linear transformation d× 2d can be applied to each
start or end vector separately, and only then the start/end
vectors have to be outer-summed.



Model I J I+J

BIDAF
LF 66.16/76.19 58.24/67.42 66.96/75.90
SF 66.20/76.21 - 66.99/75.90

BERT
LF 81.31/88.65 81.33/88.13 81.83/88.52
SF 81.38/88.68 81.23/87.97 81.65/88.36

ALBERT
LF 88.55/94.63 88.84/94.64 89.02/94.77
SF 88.53/94.00 88.28/94.10 88.68/94.49

Table 8: SQuADv1.1 EM/F1 results with length filtering (LF) and LF + surface form filtering (SF).

GPU memory (we were unable to fit larger batch
size to 12GB GPU).

D Hyperparameters

The exact hyperparameters used in this work are
documented in our code. We note that for BERT
and ALBERT, we simply followed the hyperparam-
eters proposed by the authors for SQuADv1.1. In
case of LRM models, each input context is split into
windows as proposed by Devlin et al. (2019). Each
input sequence has maximum length 384, ques-
tions are truncated to 64 tokens and context is split
with overlap stride 128. For SQuADv2.0, we fol-
low the BERT’s approach for computing the no-
answer logit in test-time. Having the set of k win-
dows We for each example e, we compute the null-
score nsw = logitP (as = 0) + logitP (ae = 0)
for each window w ∈ We. For joint and com-
pound objectives nsw = logitP (as = 0, ae = 0).
Defining that for each window w the best non-
null answer logit is aw, the no-answer logit is
then given by the difference of lowest null-score
and best-answer score Γ = minw∈We(nsw) −
maxw∈We(aw) among all windows of example e.
The threshold for Γ is determined on the validation
data via official script.

E Marginalizing Over the Same String
Forms

To alleviate the error type (3) from section 5, we
experimented with marginalizing over probabilities
of top-100 answers (so-called surface form filter-
ing). This is done via summing the probabilities
into the most probable string occurrence, and set-
ting the probability of the rest to 0. The results for
all trained models averaged over 10 checkpoints
are presented in Table 8. Note this approach some-
times hurts performance, especially in the case of
joint probability approaches, where this error type
happens very rarely.


